Lecture 5 - Event I/O

Operating Systems 1

Warsaw University of Technology - Faculty of Mathematics and Information Science

Application profiles
|O-bound vs. CPU-bound applications

CPU bound processes are nearly always ready to execute

PID 101 [running][ready][r‘unning][ready][running][ready][r‘unning][ready]

Preemp‘tiovx

I/O bound processes spend most of the time waiting
PID 102 [wait][ready][wait][ready][i/o]
/K K Blocking S(/SCO\“ 4\

Short CPU "burst” I/0O ready event

time

Blocking syscalls problem

I/O bound application main tool

Examples: stdin read(), sigsuspend(), wait().
It's a natural tool to wait-for (synchronize with) external events.

Events: "user put some text", "network data came", "other process finished".

while (run) {

int ret = read(fd, buf, N); <—— caller blocks here
if (ret < @) ERR();

handle_read(buf, ret);

3

When invoked:
- calling process cooperatively yields CPU to others
- waits not consuming any CPU time

Problems: How to wait for "two things" at once?
- cannot do any other computation in the meantime Consider:
- can't wait for other, unrelated external events - reading from multiple data sources

- reao(?ng and o(o‘mg some compu‘tation Periodica“y

Alternative: busy waiting

How to unnecessarily consume CPU resources

One could refrain from using blocking syscalls at all and use
ones which guarantee to return control immediately.

while (run) {

ret = read(fdl, buf, N, O_NONBLOCK); —block: d all
if (ret >= @) handle_read(buf, ret); & ;chk:; .:Zl‘l::;?e :ojrb:zs

ret = read(fd2, buf, N, O_NONBLOCK); < ... nterleaved manner
if (ret >= @) handle_read(buf, ret);
3

This kind of APl must define to return something,
usually erros like EAGAIN, if it could not complete immediately.
Those are not real errors, handling them is wasted time.

The above loop is not I/O bound, it's CPU bound, never blocking,
always ready for execute, despite most of the time there's nothing to do.
As such, this is wasteful approach, discouraged in general purpose OS programming.

Asynchronous event-based programming

Solution to a blocking syscall problem

Process

Kernel

Instead of blocking just schedule an operation via syscall.
Ask the OS to notify calling process via event upon completion.

// configure notification

struct async_event ev = {};

// schedule operation(s) = never blocks!
int ret = async_read(fd, buf, N, &ev);

// do something else

Async APl is far less natural to the programmer. It requires

configuring not only the operation but also how it delivers notifications.

Later, scheduling process must somehow receive completion event(s).
Put another way, it needs to synchronize with the async operation.

|
-------------- '-----

blocking syscall|

I
i
|
|
|
|
|

async call |

|
|
1
|
I
|
|
|
|
|
|
)

Event sources

What asynchronous events a program might be interested in?

timer ticks, timer elapse

) ample Functional requirement
run some computation every 3 seconds <_¢—ex mee ' equireme

I/O readiness

process command when user enters something into the terminal

Filesystem events

when user creates new file in a directory D run some computation to process it
Signal delivery
exit upon receiving C-c

Arbitrary application-level events

wait until other process/thread is done with some processing

Signal-based event handling

Asynchronous way of handling asynchronous things

Signals are a classic way to handle asynchronous events. OS may be asked to send a signal when
some event occurs, i.e. fd = 1 became readable or configured time has elapsed.

creat open
reate
/A
configure < data
= S
signal

PID 101
open

— ——
signal - = data
signal

This approach suffers from a number of pitfalls:

- signals sticking

- handler code restritions (async-signal-safe) St/ncl«\ronous s‘.gnal handlin

- does not scale (limited signal number) < Via sigsuspend() or sigwait()
- interrupts syscalls also suffers from these

https://gitlab.com/SaQQ/sop1/-/blob/master/05_events/async_fd.c?ref_type=heads

Timer API timer_create.c

Standard POSIX interface for creating signalling timers > man 3p timer_create

system clock ID what happens when
monotonic/realtime/... timer ela(ases?

| |

int timer_create(clockid_t clockid, struct sigevent *restrict evp,
timer_t *restrict timerid); < returned timer ID

int timer_gettime(timer_t timerid, struct itimerspec *curr_value);

int timer_settime(timer_t timerid, int flags,

const struct itimerspec* new_value, < timer config
struct itimerspec* old_value); nitial wait + interval

The sigevent structure descibes notification. Process specifies there signal number which it wants devlivered.
Notification by thread is also supported.

https://gitlab.com/SaQQ/sop1/-/blob/master/05_events/timer_create.c?ref_type=heads
https://man7.org/linux/man-pages/man3/timer_create.3p.html

Syscall based event handling

Synchronous way of handling events

OS exposes different way of handling async events. It provides
syscalls blocking until event occurs and returning info about it.

It frequently takes form of blocking read() from a (special) file
descriptor. Reads return structures describing the event.

int fd = make_event_source();
struct event ev;

read(fd, &ev, sizeof(ev));

// process ev

In the spirit of "everything is a file" Linux provides special FDs
for receiving timer events, signals, filesystem changes, networking 1/O
events, IPC, and others.

Process

Special FD

read() '

blocked

event desc |

:éev

_______ |:|I:| immediate

:é ev
<—ev

<<

> Jimmediate

_____ <=

<

_______ [Jimmediate

blocked

Modern, signal-free timers > man 2 timerfd_create

creates S(oecial deseriptor

int timerfd_create(int clockid, int flags); =
referencing the new timer

int timerfd_settime(int fd, int flags,
const struct itimerspec* new_value,
struct itimerspec* old_value);

int timerfd_gettime(int fd, struct itimerspec *curr_value);

Having a timer fd process can read() from it to obtain 8-byte integers representing elapse events.
Until timer elapses, read blocks. When elapsed, read completes immediately. Returned integer value
holds number of timer expirations since last read.

timerfd_create() read() 8 bytes 8 bytes

—_— [expir‘ations: 1] . [expir'ations: 3} S

https://gitlab.com/SaQQ/sop1/-/blob/master/05_events/timerfd_create.c?ref_type=heads
https://man7.org/linux/man-pages/man2/timerfd_create.2.html

SignalFD API signalfd.c

Signals without signal handler restrictions > man 2 signalfd

Signals also may be received by regular reads. Signalfd provides alternative method to signal handlers
or sigwait(). Special descriptor reads return struct signalfd_siginfo instances upon receiving a signal.

£ -1ecreates and returns new FD
int signalfd(int fd, const sigset_t *mask, int flags);

K set of awaited signals
Awaited signals shall be blocked using sigprocmask().

\ signal mask — | signals pending
2: - 9: -

1: blocked 1: -

2: blocked 2:7zst_

signalfd()
‘ extrqct
\\\\\;;;;E;\\\\\Tfés sizeof() bytes

319nalfd siginfo j .

PCB

https://gitlab.com/SaQQ/sop1/-/blob/master/05_events/signalfd.c?ref_type=heads
https://man7.org/linux/man-pages/man2/timerfd_create.2.html

Signals without signal handler restrictions

Data structure instances received via read() contain vairous attributes related to the consumed signal instance.

struct signalfd_siginfo {

uint32_t ssi_signo; /% Signal number */

uint32_t ssi_pid; /% PID of sender */

int32_t ssi_fd; /% File descriptor (SI6IO) */

int32_t ssi_status; /% Exit status or signal (SIGCHLD) */
int32_t ssi_int; /% Integer sent by sigqueue(3) */

uint64_t ssi_utime; /% User CPU time consumed (SIGCHLD) */
uint64_t ssi_stime; /% System CPU time consumed (SIGCHLD) */
/¥ ... lots of other attributes */

¥i

Signalfd approach still suffers from sticking and other issues within signals nature.
Everlasting block on mask protects main code from signals, void signal handler code related problems.

Itis very similar to what sigwait() does but provides FD-based interface. < _ this is gonna prove extremely
useful later too{ay!

https://man7.org/linux/man-pages/man2/timerfd_create.2.html

Change events

Observing state of system resources

Frequently apps need to execute some action when some OS object changes.
Example: buildserver, observing contents of the source tree, rebuilding when anything changes.

Process

Filesystem

Without state change events process would need
to periodically poll and diff state (wasting CPU time).

This solution also suffers from ABA problem.
It might miss a change if polling is not frequent enough.

Ultimately, the OS knows best when something changes,
since it executes the change. It should notify us!

inotify API

Meet the mighty filesystem monitoring interface

Inotify is an OS object, which needs to be created
and is referred to via special file descriptor.
Process has to register watches within the inotify
instance and then can await change events with
read().

Inotify can hold multiple watches: on individual
files, or whole directories. Directory watches are
non recursive.

Process

> man 7 inotify

Filesystem
a.txt

- - - £d
fd :

Inotify

watch wd |
read() I

blocked

inotify_event

struct I

https://man7.org/linux/man-pages/man7/inotify.7.html

Initializing and managing watches > man 2 inotify_add_watch

int inotify_init(void);
main inotify desciptor
reFerring to Mo‘ti\cy instance file/dir PGtL\ wanted event Types

((

int inotify_add_watch(int fd, const char *path, uint32_t mask);

Vo

int inotify_rm_watch(int fd, int wd);

individual watch AQSCHP‘tor

https://man7.org/linux/man-pages/man2/inotify_init.2.html
https://man7.org/linux/man-pages/man2/inotify_add_watch.2.html

Reading filesystem events

After registering watches, read(fd) will return instances of struct inotify_event for each detected file/dir change:

struct inotify_event { allows for watch identification
int wd; /% Watch descriptor */ =

uint32_t mask; /% Mask describing event %/ < what has happened?

uint32_t cookie; /¥ Unique cookie (for rename(2)) */

uint32_t len; /% Size of name field */ —— only for directory watches
char name[]; /% Optional null-terminated name */

¥

Instances for directory events vary in size. Application should be ready to handle largest possible:
sizeof(struct inotify_event) + NAME_MAX + 1

Many may be read in a single read() call.

https://man7.org/linux/man-pages/man7/inotify.7.html

inotify API
Event types

Mask lists event types which happened. Different events may happen depending if watch refers to dir or file.

File Directory File in watched directory
data cl«angeo(oo ol J
\s IN_MODIFY / nese senes IN_ATTRIB
IN_ATTRIB IN_ATTRIB IN_CREATE
IN_DELETE_SELF=* IN_DELETE_SELF=* IN_DELETE
IN_MOVE_SELF=* IN_MOVE_SELF* \ IN_MODIFY
IN_MOVED_FROM
watch subject
moved/deleted IN_MOVED_TO

IN_ISDIR will be set in mask if event relates to directory (i.e. dir created)
(*) When watched object or it's watch is removed special IN_IGNORED event is generated.

§\ important to handle it/

Initial scan race condition

If an applications intends to cache contents
of the watched object and update the cache
when change is reported care must be taken
on startup.

Initial scan must be executed AFTER adding
watches. Otherwise app might miss change
which happens before adding watch.

Process

Inotify Filesystem
fd a.txt
read() i

Directory tree watching

root
Watching directory trees requires registering individual WQtCh home mot

watches for each subdirectory recursively.
W\

After detecting that new sub-directory was created

a corresponding watch must be registered. wat\ alqn m [J

Deleting a directory at some level generates bottom-up
cascade of events, deleting watches automatically.

log cat

perm

https://gitlab.com/SaQQ/sop1/-/blob/master/05_events/watch_tree.c?ref_type=heads

. . > . .
io_uring AP WARNING

ADVANCED STUFF

Modern async I/O interface

For massive asynchronous read/write operations modern linux kernel introduced new API called io_uring
IO userspace ring. It allows to submit multiple batched I/O operations to the kernel and read completion
events. Communication happens over two queues: submission and completion.

schedule _ (trite)(reed J(rees]

ﬁ [Submission Queue] \

PID 101 process Kernel

& [Completion Queue]%
completion
events

Low-level syscall interface is very complex as it requires establishing queues in special memory segments
shared between userspace and kernel.
Application usually consume io_uring API via a wrapper liburing library .

https://man7.org/linux/man-pages/man7/inotify.7.html

> man 3 io_uring_queue_init

io_uring API

Modern async I/O interface

First thing that needs to happen is creation of queues:

%/ queues size

int io_uring_queue_init(unsigned entries, / constructed ring (out)
struct io_uring *ring,
unsigned flags);

Corresponding cleanup shall be called at the end of an application to free the queues:

void io_uring_queue_exit(struct io_uring *ring);

https://man7.org/linux/man-pages/man3/io_uring_queue_init.3.html

io_uring API > man 3 io_uring_get_sqe

Submission queue management > man 3 io_uring_prep_read

Sending I/O request is a 2-step process: populate queue entry (or entries) and then submit the queue.

struct io_uring_sqe *io_uring_get_sqe(struct io_uring *ring);

L read()
Q/ / args
void io_uring_prep_read(struct io_uring_sqe *sqge, int fd, void xbuf,
unsigned nbytes, __u64 offset);

Scheduling whole queue is done via single > man 3 io_uring_submit
call which translates to a non-blocking syscall:

int io_uring_submit(struct io_uring *ring);

https://man7.org/linux/man-pages/man3/io_uring_get_sqe.3.html
https://man7.org/linux/man-pages/man3/io_uring_prep_read.3.html
https://man7.org/linux/man-pages/man3/io_uring_submit.3.html

> man 3 io_uring_wait_cqe

io_uring API

Completion queue management > man 3 io_uring_cqe_seen

Later, the event loop waits for and retrieves completion events:

struct io_uring_cqe cqe; N
int io_uring_wait_cqe(struct io_uring *ring,

struct io_uring_cqe **cqe_ptr);

... and mark it as consumed to free the spot in CQ:

void io_uring_cqe_seen(struct io_uring *ring,
struct io_uring_cge *cge);

Completion event structure contains status code (errno) and optional arbitrary u64 passed during submission.

struct io_uring_cqe {

__ub4 user_data; /* sqe->data submission passed back */
__s32 res; /* result code for this event */

__u32 flags;

¥

https://man7.org/linux/man-pages/man3/io_uring_wait_cqe.3.html
https://man7.org/linux/man-pages/man3/io_uring_cqe_seen.3.html

Event multiplexing

How to process multiple event sources

Reading from a single data source blocks. How to run an application which awaits timers, stdin, filesystem,
signals and other events at the same time?

Having coherent file desciriptor API, OS provides interface to await I/O events of mutliple
file descriptors at once - the event multiplexer.

O&

O% Event multiplexer OOOO()O PID 101
select

-

There are several different APIs for multiplexing events available: select(), poll(), epoll().

> man 3p pselect

The select() syscall

How to read from mutliple file descriptors at once? select_basic.c

Select is a blocking syscall which takes mutliple file descriptors
and returns when at least one is ready for I/O operation.

K max Fd value
int select(int nfds,

fd_set* readfds, s o(escri(ator sets

fd_set* writefds, j

fd_set* errorfds,

struct timeval* timeout); = optional timeout

Three descriptor sets are like signal sets (bitmask) and must be constructed via macros before the call:

void FD_CLR(int fd, fd_set *fdset);
int FD_ISSET(int fd, fd_set x*fdset);
void FD_SET(int fd, fd_set *fdset);
void FD_ZERO(fd_set *fdset);

Select works with many 1/O object types, including all mentioned in this lecture.

https://man7.org/linux/man-pages/man3/pselect.3p.html
https://gitlab.com/SaQQ/sop1/-/blob/master/05_events/select_basic.c?ref_type=heads

The event loop select_multiple.c

How to read from mutliple file descriptors at once?

Select and other multiplexers are usually the heart of an event-driven application.
Blocking call is made in "the event loop". Each time multiplexer returns,
events are iteratively processed. Then app goes back to sleep awaiting new events.

while(run) {
FD_ZERO(&read_fds);
FD_SET(stdin_fd, &read_fds);

{
FD_SET(timer_£fd, &read_fds); prepare ca
// ... other fds
int n = select(max_fd + 1, &read_fds, NULL, NULL, NULL); block

if (n < @) ERR();

if (FD_ISSET(stdin_fd, &read_fds)) {
// read stdin

¥

if (FD_ISSET(timer_fd, &read_fds)) {
// read timer events

¥

¥

process events

https://gitlab.com/SaQQ/sop1/-/blob/master/05_events/select_multiple.c?ref_type=heads

