
Lecture 5 - Event I/O
Operating Systems 1

Warsaw University of Technology - Faculty of Mathematics and Information Science

CPU bound processes are nearly always ready to execute

I/O ready event
blocking syscall

preemption

Application profiles
IO-bound vs. CPU-bound applications

time

PID 101 running ready running ready running ready running ready

r wait ready r wait ready r i/oPID 102

I/O bound processes spend most of the time waiting

Short CPU "burst"

while (run) {
int ret = read(fd, buf, N);
if (ret < 0) ERR();
handle_read(buf, ret);
}

Examples: stdin read(), sigsuspend(), wait().
It's a natural tool to wait-for (synchronize with) external events.
Events: "user put some text", "network data came", "other process finished".

caller blocks here

How to wait for "two things" at once?
Consider:
- reading from multiple data sources
- reading and doing some computation periodically

Blocking syscalls problem
I/O bound application main tool

When invoked:
- calling process cooperatively yields CPU to others
- waits not consuming any CPU time
Problems:
- cannot do any other computation in the meantime
- can't wait for other, unrelated external events

One could refrain from using blocking syscalls at all and use
ones which guarantee to return control immediately.

Alternative: busy waiting
How to unnecessarily consume CPU resources

while (run) {
ret = read(fd1, buf, N, O_NONBLOCK);
if (ret >= 0) handle_read(buf, ret);
ret = read(fd2, buf, N, O_NONBLOCK);
if (ret >= 0) handle_read(buf, ret);
}
This kind of API must define to return something,
usually erros like EAGAIN, if it could not complete immediately.
Those are not real errors, handling them is wasted time.

non-blocking read allows
to check multiple sources
in an interleaved manner

The above loop is not I/O bound, it's CPU bound, never blocking,
always ready for execute, despite most of the time there's nothing to do.
As such, this is wasteful approach, discouraged in general purpose OS programming.

Instead of blocking just schedule an operation via syscall.
Ask the OS to notify calling process via event upon completion.

Process

never blocks!

Asynchronous event-based programming
Solution to a blocking syscall problem

// configure notification
struct async_event ev = {};
// schedule operation(s)
int ret = async_read(fd, buf, N, &ev);
// do something else

Kernel

Async API is far less natural to the programmer. It requires
configuring not only the operation but also how it delivers notifications.

Later, scheduling process must somehow receive completion event(s).
Put another way, it needs to synchronize with the async operation.

blocking syscall

async call

Event sources

timer ticks, timer elapse
example functional requirement

What asynchronous events a program might be interested in?

I/O readiness

Filesystem events

Signal delivery

Arbitrary application-level events

run some computation every 3 seconds

process command when user enters something into the terminal

when user creates new file in a directory D run some computation to process it

exit upon receiving C-c

wait until other process/thread is done with some processing

Signal-based event handling
Asynchronous way of handling asynchronous things

Signals are a classic way to handle asynchronous events. OS may be asked to send a signal when
some event occurs, i.e. fd = 1 became readable or configured time has elapsed.

PID 101

fd 1
create

configure

open

open

signal

data

Synchronous signal handling
via sigsuspend() or sigwait()

also suffers from these

This approach suffers from a number of pitfalls:
- signals sticking
- handler code restritions (async-signal-safe)
- does not scale (limited signal number)
- interrupts syscalls

fd 3

timer

signal

signal

data

async_fd.c

https://gitlab.com/SaQQ/sop1/-/blob/master/05_events/async_fd.c?ref_type=heads

Timer API
Standard POSIX interface for creating signalling timers

int timer_create(clockid_t clockid, struct sigevent *restrict evp,
timer_t *restrict timerid);

int timer_gettime(timer_t timerid, struct itimerspec *curr_value);
int timer_settime(timer_t timerid, int flags,
const struct itimerspec* new_value,
struct itimerspec* old_value);

system clock ID
monotonic/realtime/...

what happens when
timer elapses?

returned timer ID

timer config
initial wait + interval

The sigevent structure descibes notification. Process specifies there signal number which it wants devlivered.
Notification by thread is also supported.

timer_create.c
> man 3p timer_create

https://gitlab.com/SaQQ/sop1/-/blob/master/05_events/timer_create.c?ref_type=heads
https://man7.org/linux/man-pages/man3/timer_create.3p.html

int fd = make_event_source();
struct event ev;
read(fd, &ev, sizeof(ev));
// process ev

Syscall based event handling
Synchronous way of handling events

OS exposes different way of handling async events. It provides
syscalls blocking until event occurs and returning info about it.

It frequently takes form of blocking read() from a (special) file
descriptor. Reads return structures describing the event.

In the spirit of "everything is a file" Linux provides special FDs
for receiving timer events, signals, filesystem changes, networking I/O
events, IPC, and others.

ev

...

blocked
read()

event desc

Process Special FD

ev

ev
ev

immediate

immediate
immediate

blocked

TimerFD API
Modern, signal-free timers

fd 3
timerfd_create() read()

expirations: 1 ...
8 bytes

int timerfd_create(int clockid, int flags);

int timerfd_settime(int fd, int flags,
const struct itimerspec* new_value,
struct itimerspec* old_value);

int timerfd_gettime(int fd, struct itimerspec *curr_value);

Having a timer fd process can read() from it to obtain 8-byte integers representing elapse events.
Until timer elapses, read blocks. When elapsed, read completes immediately. Returned integer value
holds number of timer expirations since last read.

creates special descriptor
referencing the new timer

timerfd_create.c
> man 2 timerfd_create

expirations: 3 ...
8 bytes

https://gitlab.com/SaQQ/sop1/-/blob/master/05_events/timerfd_create.c?ref_type=heads
https://man7.org/linux/man-pages/man2/timerfd_create.2.html

SignalFD API
Signals without signal handler restrictions

int signalfd(int fd, const sigset_t *mask, int flags);

Signals also may be received by regular reads. Signalfd provides alternative method to signal handlers
or sigwait(). Special descriptor reads return struct signalfd_siginfo instances upon receiving a signal.

Awaited signals shall be blocked using sigprocmask().
set of awaited signals

-1 creates and returns new FD

extract

PCB

signalfd.c
> man 2 signalfd

fd 3
signalfd()

read()
signalfd_siginfo ...
sizeof() bytes

...

0: -

1: blocked

2: blocked

signal mask

...

0: -

1: -

2: set

signals pending

https://gitlab.com/SaQQ/sop1/-/blob/master/05_events/signalfd.c?ref_type=heads
https://man7.org/linux/man-pages/man2/timerfd_create.2.html

SignalFD API
Signals without signal handler restrictions

> man 2 signalfd

struct signalfd_siginfo {
uint32_t ssi_signo; /* Signal number */
uint32_t ssi_pid; /* PID of sender */
int32_t ssi_fd; /* File descriptor (SIGIO) */
int32_t ssi_status; /* Exit status or signal (SIGCHLD) */
int32_t ssi_int; /* Integer sent by sigqueue(3) */
uint64_t ssi_utime; /* User CPU time consumed (SIGCHLD) */
uint64_t ssi_stime; /* System CPU time consumed (SIGCHLD) */
/* ... lots of other attributes */
};

Data structure instances received via read() contain vairous attributes related to the consumed signal instance.

Signalfd approach still suffers from sticking and other issues within signals nature.
Everlasting block on mask protects main code from signals, void signal handler code related problems.

It is very similar to what sigwait() does but provides FD-based interface. this is gonna prove extremely
useful later today!

https://man7.org/linux/man-pages/man2/timerfd_create.2.html

Change events
Observing state of system resources

Frequently apps need to execute some action when some OS object changes.
Example: buildserver, observing contents of the source tree, rebuilding when anything changes.

Without state change events process would need
to periodically poll and diff state (wasting CPU time).

A -> C This solution also suffers from ABA problem.
It might miss a change if polling is not frequent enough.

Ultimately, the OS knows best when something changes,
since it executes the change. It should notify us!

read()

A

Process Filesystem

A

B

C -> A

A -> B

inotify API
Meet the mighty filesystem monitoring interface

Inotify is an OS object, which needs to be created
and is referred to via special file descriptor.
Process has to register watches within the inotify
instance and then can await change events with
read().

Inotify can hold multiple watches: on individual
files, or whole directories. Directory watches are
non recursive.

init()

add_watch(a.txt)

write()
ev

blocked

struct
inotify_event

> man 7 inotify

Process

Inotify
fd

Filesystem
a.txt

fd

watch wd

User

read()

https://man7.org/linux/man-pages/man7/inotify.7.html

int inotify_rm_watch(int fd, int wd);

inotify API > man 2 inotify_init

int inotify_init(void);

int inotify_add_watch(int fd, const char *path, uint32_t mask);

main inotify desciptor
referring to inotify instance

individual watch descriptor

wanted event typesfile/dir path

Initializing and managing watches > man 2 inotify_add_watch

https://man7.org/linux/man-pages/man2/inotify_init.2.html
https://man7.org/linux/man-pages/man2/inotify_add_watch.2.html

inotify API
Reading filesystem events

struct inotify_event {
int wd; /* Watch descriptor */
uint32_t mask; /* Mask describing event */
uint32_t cookie; /* Unique cookie (for rename(2)) */
uint32_t len; /* Size of name field */
char name[]; /* Optional null-terminated name */
};

After registering watches, read(fd) will return instances of struct inotify_event for each detected file/dir change:

allows for watch identification
what has happened?

only for directory watches

Instances for directory events vary in size. Application should be ready to handle largest possible:

sizeof(struct inotify_event) + NAME_MAX + 1

> man 7 inotify

Many may be read in a single read() call.

https://man7.org/linux/man-pages/man7/inotify.7.html

Mask lists event types which happened. Different events may happen depending if watch refers to dir or file.

(*) When watched object or it's watch is removed special IN_IGNORED event is generated.

important to handle it!

inotify API
Event types

File File in watched directory

IN_ATTRIB IN_ATTRIB
IN_ATTRIB
IN_CREATE
IN_DELETEIN_DELETE_SELF* IN_DELETE_SELF*

IN_MODIFY

IN_MODIFYIN_MOVE_SELF* IN_MOVE_SELF*
IN_MOVED_FROM
IN_MOVED_TO

IN_ISDIR will be set in mask if event relates to directory (i.e. dir created)

inode changed
Directory

data changed

watch subject
moved/deleted

Initial scan race condition

If an applications intends to cache contents
of the watched object and update the cache
when change is reported care must be taken
on startup.

read()

A

add_watch(a.txt)

B -> Cblocked

Process Inotify
fd

Filesystem
a.txt

read()

A -> B

C

Initial scan must be executed AFTER adding
watches. Otherwise app might miss change
which happens before adding watch.

Directory tree watching

Watching directory trees requires registering individual
watches for each subdirectory recursively.

After detecting that new sub-directory was created
a corresponding watch must be registered.

inotify

root
watch

Deleting a directory at some level generates bottom-up
cascade of events, deleting watches automatically.

home root

alan chris

log env

etc perm

hey cat

watch

watch

watch_tree.c

https://gitlab.com/SaQQ/sop1/-/blob/master/05_events/watch_tree.c?ref_type=heads

io_uring API
Modern async I/O interface

For massive asynchronous read/write operations modern linux kernel introduced new API called io_uring
IO userspace ring. It allows to submit multiple batched I/O operations to the kernel and read completion
events. Communication happens over two queues: submission and completion.

Low-level syscall interface is very complex as it requires establishing queues in special memory segments
shared between userspace and kernel.
Application usually consume io_uring API via a wrapper liburing library .

PID 101
Submission Queue

readschedule

completion
events

WARNING!
ADVANCED STUFF

> man 7 io_uring

Kernel
Completion Queue

readwrite

done done

process

https://man7.org/linux/man-pages/man7/inotify.7.html

io_uring API
Modern async I/O interface

> man 3 io_uring_queue_init

int io_uring_queue_init(unsigned entries,
struct io_uring *ring,
unsigned flags);

First thing that needs to happen is creation of queues:

void io_uring_queue_exit(struct io_uring *ring);

queues size

constructed ring (out)

Corresponding cleanup shall be called at the end of an application to free the queues:

https://man7.org/linux/man-pages/man3/io_uring_queue_init.3.html

io_uring API
Submission queue management

> man 3 io_uring_get_sqe

struct io_uring_sqe *io_uring_get_sqe(struct io_uring *ring);

Sending I/O request is a 2-step process: populate queue entry (or entries) and then submit the queue.

int io_uring_submit(struct io_uring *ring);

Scheduling whole queue is done via single
call which translates to a non-blocking syscall:

void io_uring_prep_read(struct io_uring_sqe *sqe, int fd, void *buf,
unsigned nbytes, __u64 offset);

read()
args

> man 3 io_uring_prep_read

> man 3 io_uring_submit

https://man7.org/linux/man-pages/man3/io_uring_get_sqe.3.html
https://man7.org/linux/man-pages/man3/io_uring_prep_read.3.html
https://man7.org/linux/man-pages/man3/io_uring_submit.3.html

io_uring API
Completion queue management

> man 3 io_uring_wait_cqe

struct io_uring_cqe cqe;
int io_uring_wait_cqe(struct io_uring *ring,
struct io_uring_cqe **cqe_ptr);

Later, the event loop waits for and retrieves completion events:

Completion event structure contains status code (errno) and optional arbitrary u64 passed during submission.

... and mark it as consumed to free the spot in CQ:

void io_uring_cqe_seen(struct io_uring *ring,
struct io_uring_cqe *cqe);

struct io_uring_cqe {
__u64 user_data; /* sqe->data submission passed back */
__s32 res; /* result code for this event */
__u32 flags;
};

> man 3 io_uring_cqe_seen

https://man7.org/linux/man-pages/man3/io_uring_wait_cqe.3.html
https://man7.org/linux/man-pages/man3/io_uring_cqe_seen.3.html

Event multiplexing
How to process multiple event sources

Reading from a single data source blocks. How to run an application which awaits timers, stdin, filesystem,
signals and other events at the same time?

Event multiplexer

fd

select()

Having coherent file desciriptor API, OS provides interface to await I/O events of mutliple
file descriptors at once - the event multiplexer.

There are several different APIs for multiplexing events available: select(), poll(), epoll().

fd

fd

PID 101

The select() syscall
How to read from mutliple file descriptors at once?

int select(int nfds,
fd_set* readfds,
fd_set* writefds,
fd_set* errorfds,
struct timeval* timeout);

void FD_CLR(int fd, fd_set *fdset);
int FD_ISSET(int fd, fd_set *fdset);
void FD_SET(int fd, fd_set *fdset);
void FD_ZERO(fd_set *fdset);

optional timeout

Select is a blocking syscall which takes mutliple file descriptors
and returns when at least one is ready for I/O operation.

Three descriptor sets are like signal sets (bitmask) and must be constructed via macros before the call:

> man 3p pselect

descriptor sets

max fd value

select_basic.c

Select works with many I/O object types, including all mentioned in this lecture.

https://man7.org/linux/man-pages/man3/pselect.3p.html
https://gitlab.com/SaQQ/sop1/-/blob/master/05_events/select_basic.c?ref_type=heads

process events

block

The event loop
How to read from mutliple file descriptors at once?

prepare call

while(run) {
FD_ZERO(&read_fds);
FD_SET(stdin_fd, &read_fds);
FD_SET(timer_fd, &read_fds);
// ... other fds
int n = select(max_fd + 1, &read_fds, NULL, NULL, NULL);
if (n < 0) ERR();
if (FD_ISSET(stdin_fd, &read_fds)) {
// read stdin
}
if (FD_ISSET(timer_fd, &read_fds)) {
// read timer events
}
}

Select and other multiplexers are usually the heart of an event-driven application.
Blocking call is made in "the event loop". Each time multiplexer returns,
events are iteratively processed. Then app goes back to sleep awaiting new events.

select_multiple.c

https://gitlab.com/SaQQ/sop1/-/blob/master/05_events/select_multiple.c?ref_type=heads

