Input/Output — part 1

Last modification: 06.11.2017

L.J. Opalski, slides for Operating Systems courses

Streams and descriptor-based I/O
POSIX

" File descriptor - a per-process unique, non-negative integer used to identify an
open file for the purpose of file access. The value of a file descriptor is from zero to
{OPEN_ MAX}. A process can have no more {OPEN MAX} file descriptors open

simultaneously.

® A stream is a file access object that allows access to an ordered sequence of
characters, as described by the ISO C standard. Such objects can be created by the
fdopen(), fopen(), or popen() functions, and are associated with a file

descriptor. A process can have no more {FOPEN MAX} streams open.

Comments

" File descriptors, used for low-level 1/O, are represented as objects of type int, while streams
are represented as FILE* type ,file pointers”.

" File descriptors have to be used when one wants to perform control operations that are specific
to a particular device or to do I/O operation in special modes, e.g. non-blocking/polled input.

® Streams are built on top of the file descriptor facilities, so it is possible to get related descriptor
of a stream (fileno()). It is also possible to build a stream atop a descriptor (fdopen()).

® |/O streams are portable across systems running ISO C, while file descriptor based I/O is
supported by POSIX and UNIX-like systems.

5 L.J. Opalski, slides for Operating Systems courses

Stream buffering

Streams can be:

" Unbuffered (_ IONBF) - characters written to or read from an unbuffered stream
are transmitted individually to or from the file as soon as possible.

" Line buffered (_IOLBF) — characters are transmitted when a newline character is
encountered.

" Fully buffered (_IOBF) - bytes are intended to be transmitted as a block when a
buffer is filled.

Good size of buffer (BUFSIZ) is given in <stdio.h>

Newly opened streams are fully buffered, except the streams connected to an
interactive device such as a terminal are initially line buffered.
int setvbuf (FILE *stream, char *buf, int mode, size t size);

// sets buffering mode (_IOFBF, IOLBF, IONBF) and

// possibly the buffer of given size (if buf not NULL)

void setbuf (FILE *stream, char *buf); // sets stream mode
//to IOBF unless buf==NULL (then mode is IOBF)

int f£flush (FILE *stream); // Dbuffered output of the stream
// delivered to file, if stream==NULL -2 all buffered
// output is flushed

L.J. Opalski, slides for Operating Systems courses

Opening/closing streams

® stdin, stdout, stderr — streams available to a process upon start-up.

® Opening / closing other streams (to files, pipes):
FILE *fopen (const char *filename, const char *opentype);
// opens a stream for I/0 to the file filename, and
// returns a pointer to the stream. opentype:
// "x”, “w’, “r+” - read-only, write-only, read-write
// “a”, “a+” - appends write-only, appends read-write
// after flushing the stream buffer
// “w+”- truncates (to 0 length) then updates
Note: Opening with append mode (‘'a’)shall cause all subsequent writes
to the file to be forced to the then current end-of file, regardless
intervening calls to fseek()
Note: When opened, a stream is fully buffered 1f and only f it can be
determined to not refer to an interactive device.
Note: When in append mode (‘+’) mixing reading/writing is allowed if
separated by f£flush() or positioning (fseek(), fsetpos() ,rewind())

FILE *fdopen (int fildes, const char *mode); // associates
// a stream with a file descriptor
int fclose (FILE *stream); // closes the stream

int fecloseall (void); // closes all streams

4 L.J. Opalski, slides for Operating Systems courses

Stream locking; EOF and errors

" The POSIX standard requires that by default the stream operations are
atomic. i.e., issuing two stream operations for the same stream in two
threads at the same time will cause the operations to be executed as if
they were issued sequentially.

" Explicit stream locking is also available to control stream access:

vold flockfile (FILE *stream);

int ftrylockfile (FILE *stream);

void funlockfile (FILE *stream);

" Testing End-Of-File indicator on the stream:
int feof (FILE *stream) ;

® Testing and clearing error indicator on the stream:
void ferror (FILE *stream);// testing error indicator
void clearerr (FILE *stream); // clearing the EOF

// and error indicators for the stream

L.J. Opalski, slides for Operating Systems courses

Stream position

For streams that refer to randomly-accessed devices/files it is possible to get and set
stream position (for other an error condition occurs).

Getting position in a stream:
long int ftell(FILE *stream);// returns -1L on error

off t ftello(FILE *stream);// used for very long files

int fgetpos (FILE *stream, fpos t *position); // returns error
// code; shall store to *position the current values of the
// parse state (if any) and position indicator for the stream

Setting position in a stream:
int fseek (FILE *stream, long int offset, int whence); // sets

// absolute or relative position
int fseeko (FILE *stream, off t offset, int whence); // long f.
void rewind (FILE *stream);//reset the file position indicator
int fsetpos (FILE *stream, const fpos t *position);// sets

// absolute position in a stream

Note: position indicator contains unspecified information usable by fsetpos() for
repositioning the stream to its position at the time of the call to fgetpos() .

Note: to write programs compatible with non-POSIX systems that implement binary
and text files differently use fgetpos/fsetpos and binary flag ‘b’ in the fopen mode

6 L.J. Opalski, slides for Operating Systems courses

Stream |/O operations

" Basic (byte-oriented) input functions (also ISO C):
int fgetc (FILE *stream); int getc(FILE *stream);

int getchar (void);
char * fgets (char *buf, int buflen, FILE *stream);

tnt fscanf (FILE *stream, const char *template,..)

® Basic (byte-oriented) output functions (also 1ISO C):
int fputec(int ¢, FILE *stream);

int putc(int ¢, FILE *stream);

int fputs(const char *s, FILE *stream); // Spoints ata C-string
int puts(const char *s);

int fprintf (FILE *stream, const char *template, ..);

int printf (const char *template, ..)

" Binary read/write functions (note stream format is machine/OS dependent!):
size t fread(void *ptr,size t size,size t nitems,FILE *stream);
size t fwrite(void *ptr,size t size,size t nitems,FILE *stream);

7 L.J. Opalski, slides for Operating Systems courses

Directories

POSIX:

" Working (current) directory - a directory, associated with a process, that is
used in pathname resolution for pathnames that do not begin with a slash

" Root directory - directory, associated with a process, that is used in pathname
resolution for pathnames that begin with a slash.

int chroot (const char *path); // defines new path
// to the root directory

int chdir (const char *path); //changes the path
// to the working directory

char *getcwd(char *buf, size t size); //returns

I/ null-terminated path to the working directory
Il see getcwd (3) for details

L.J. Opalski, slides for Operating Systems courses

Directory stream

" Directory entry (or link) - an object that associates a filename with a file.
Several directory entries can associate names with the same file.

POSIX:
directory entry is represented by struct dirent (Ssee <dirent.h>),

which includes:

ino t d ino - file serial number (e.g. node number)
char d name[] - name of entry.
Note:

® Length of the d_name is available as strlen (d name) not sizeof (d name)

® Attributes of a directory entry can be retrieved with stat () function call (or
lstat () for symbolic link entry)

® Directory stream - a sequence of all the directory entries in a particular
directory

POSIX:

Header file <dirent.h> defines DIR - a (possibly incomplete) type representing
a directory stream.

L.J. Opalski, slides for Operating Systems courses

Directory stream operations

DIR * opendir (const char *dirname) ; //opens and returns directory stream
int closedir (DIR *dirstream); /Il closing the directory stream

struct dirent * readdir (DIR *dirstream); [/ reading directory entry

Note: the pointer returned points to readdir maintained data buffer which may be
overwritten by another readdir () call on the same stream.

int readdir r (DIR *restrict dirp,
struct dirent *restrict entry,
struct dirent **restrict result);
/l reading directory entry to a user specified buffer (entry)
/I with d_name field of at least {NAME MAX}+1 bytes

void rewinddir (DIR *dirstream); // resetting the directory stream position
int telldir (DIR *dirstream); /I reporting position in the stream
void seekdir (DIR *dirstream, long int pos); [/ setting stream pos.

10 L.J. Opalski, slides for Operating Systems courses

Example

Example of simple current working directory listing code:
#include <stdio.h>
#include <stdlib.h>
#include <dirent.h>
#include <sys/stat.h>
#include <errno.h>
#define ERR (source) (perror (source), \
fprintf (stderr,"$s:%d\n", FILE , LINE), exit (EXIT FAILURE))

int main(int argc, char** argv) {

DIR *dirp;

struct dirent *dp;

struct stat filestat;

if (NULL == (dirp = opendir ("."))) ERR("opendir");
do {

errno = 0;

if ((dp = readdir (dirp)) != NULL) {

1f (lstat(dp->d name, &filestat)) ERR("lstat");
printf ("$1l6s : %$10zd B\n",dp->d name, filestat.st size);
}
} while (dp != NULL);
if (errno != 0) ERR("readdir");
1f (closedir (dirp)) ERR("closedir");
return EXIT SUCCESS;

L.J. Opalski, slides for Operating Systems courses

Handling file links

int ret=link (const char *oldpath, const char *newpath)

makes a new link to the existing file named by oldpath, under the new name
newpath

int ret=symlink (const char *oldpath, const char *newpath)
makes a symbolic link to oldpath (does not have to exist) named newpath
int ret=readlink (const char *filename, char *buf,
size t size)

gets the value of the symbolic link £ilename and stores it in a buffer buf of
given size.

int ret=rename (const char *old, const char *new)
renames the file o1ld to new.

int ret=unlink (const char *path) - deletes the file name path.

The above functions return ret==0 0n success or ret== -1 otherwise
(error code in errno).

12 L.J. Opalski, slides for Operating Systems courses

