
L.J. Opalski, slides for Operating Systems courses
1

Input/Output – part 1

Last modification: 06.11.2017

L.J. Opalski, slides for Operating Systems courses
2

Streams and descriptor-based I/O
POSIX

 File descriptor - a per-process unique, non-negative integer used to identify an

open file for the purpose of file access. The value of a file descriptor is from zero to
{OPEN_MAX}. A process can have no more {OPEN_MAX} file descriptors open

simultaneously.

 A stream is a file access object that allows access to an ordered sequence of

characters, as described by the ISO C standard. Such objects can be created by the
fdopen(), fopen(), or popen() functions, and are associated with a file

descriptor. A process can have no more {FOPEN_MAX} streams open.

Comments

 File descriptors, used for low-level I/O, are represented as objects of type int, while streams

are represented as FILE* type „file pointers”.

 File descriptors have to be used when one wants to perform control operations that are specific

to a particular device or to do I/O operation in special modes, e.g. non-blocking/polled input.

 Streams are built on top of the file descriptor facilities, so it is possible to get related descriptor

of a stream (fileno()). It is also possible to build a stream atop a descriptor (fdopen()).

 I/O streams are portable across systems running ISO C, while file descriptor based I/O is

supported by POSIX and UNIX-like systems.

L.J. Opalski, slides for Operating Systems courses
3

Stream buffering

Streams can be:

 Unbuffered (_IONBF) - characters written to or read from an unbuffered stream

are transmitted individually to or from the file as soon as possible.

 Line buffered (_IOLBF) – characters are transmitted when a newline character is

encountered.

 Fully buffered (_IOBF) - bytes are intended to be transmitted as a block when a

buffer is filled.

Good size of buffer (BUFSIZ) is given in <stdio.h>

Newly opened streams are fully buffered, except the streams connected to an

interactive device such as a terminal are initially line buffered.
int setvbuf(FILE *stream, char *buf, int mode, size_t size);

 // sets buffering mode (_IOFBF, _IOLBF, _IONBF) and

 // possibly the buffer of given size (if buf not NULL)

void setbuf (FILE *stream, char *buf); // sets stream mode

 //to _IOBF unless buf==NULL (then mode is _IOBF)

int fflush (FILE *stream); // buffered output of the stream

 // delivered to file, if stream==NULL  all buffered

 // output is flushed

L.J. Opalski, slides for Operating Systems courses
4

Opening/closing streams

 stdin, stdout, stderr – streams available to a process upon start-up.

 Opening / closing other streams (to files, pipes):
FILE *fopen(const char *filename, const char *opentype);

 // opens a stream for I/O to the file filename, and

 // returns a pointer to the stream. opentype:

 // ”r”, “w”, “r+” – read-only, write-only, read-write

 // “a”, “a+” – appends write-only, appends read-write

 // after flushing the stream buffer

 // “w+”- truncates (to 0 length) then updates

Note: Opening with append mode (‘a’)shall cause all subsequent writes

to the file to be forced to the then current end-of file, regardless

intervening calls to fseek()

Note: When opened, a stream is fully buffered if and only f it can be

determined to not refer to an interactive device.

Note: When in append mode (‘+’) mixing reading/writing is allowed if

separated by fflush() or positioning (fseek(),fsetpos() ,rewind())

FILE *fdopen (int fildes, const char *mode); // associates

 // a stream with a file descriptor

int fclose(FILE *stream); // closes the stream

int fcloseall(void); // closes all streams

L.J. Opalski, slides for Operating Systems courses
5

Stream locking; EOF and errors

 The POSIX standard requires that by default the stream operations are

atomic. i.e., issuing two stream operations for the same stream in two

threads at the same time will cause the operations to be executed as if

they were issued sequentially.

 Explicit stream locking is also available to control stream access:

void flockfile (FILE *stream);

int ftrylockfile (FILE *stream);

void funlockfile (FILE *stream);

 Testing End-Of-File indicator on the stream:
int feof(FILE *stream);

 Testing and clearing error indicator on the stream:

void ferror(FILE *stream);// testing error indicator

void clearerr(FILE *stream); // clearing the EOF

 // and error indicators for the stream

L.J. Opalski, slides for Operating Systems courses
6

Stream position
For streams that refer to randomly-accessed devices/files it is possible to get and set

stream position (for other an error condition occurs).

Getting position in a stream:

long int ftell(FILE *stream);// returns -1L on error

off_t ftello(FILE *stream);// used for very long files

int fgetpos(FILE *stream, fpos_t *position); // returns error

// code; shall store to *position the current values of the

// parse state (if any) and position indicator for the stream

Setting position in a stream:
int fseek(FILE *stream, long int offset, int whence); // sets

 // absolute or relative position

int fseeko(FILE *stream, off_t offset, int whence); // long f.

void rewind(FILE *stream);//reset the file position indicator

int fsetpos(FILE *stream, const fpos_t *position);// sets

 // absolute position in a stream

Note: position indicator contains unspecified information usable by fsetpos() for

repositioning the stream to its position at the time of the call to fgetpos() .

Note: to write programs compatible with non-POSIX systems that implement binary
and text files differently use fgetpos/fsetpos and binary flag ‘b’ in the fopen mode

L.J. Opalski, slides for Operating Systems courses
7

Stream I/O operations

 Basic (byte-oriented) input functions (also ISO C):

int fgetc(FILE *stream); int getc(FILE *stream);

int getchar(void);

char * fgets(char *buf, int buflen, FILE *stream);

tnt fscanf(FILE *stream, const char *template,…)

 Basic (byte-oriented) output functions (also ISO C):

int fputc(int c, FILE *stream);

int putc(int c, FILE *stream);

int fputs(const char *s, FILE *stream); // s points at a C-string

int puts(const char *s);

int fprintf(FILE *stream, const char *template, …);

int printf(const char *template, …)

 Binary read/write functions (note stream format is machine/OS dependent!):

size_t fread(void *ptr,size_t size,size_t nitems,FILE *stream);

size_t fwrite(void *ptr,size_t size,size_t nitems,FILE *stream);

L.J. Opalski, slides for Operating Systems courses
8

Directories

POSIX:

 Working (current) directory - a directory, associated with a process, that is

used in pathname resolution for pathnames that do not begin with a slash

 Root directory - directory, associated with a process, that is used in pathname

resolution for pathnames that begin with a slash.

int chroot(const char *path); // defines new path

 // to the root directory

int chdir(const char *path); // changes the path

 // to the working directory

char *getcwd(char *buf, size_t size); // returns

 // null-terminated path to the working directory
 // see getcwd(3) for details

L.J. Opalski, slides for Operating Systems courses
9

Directory stream

 Directory entry (or link) - an object that associates a filename with a file.

Several directory entries can associate names with the same file.

POSIX:
directory entry is represented by struct dirent (see <dirent.h>),

which includes:

ino_t d_ino - file serial number (e.g. node number)

char d_name[] - name of entry.

Note:

 Length of the d_name is available as strlen(d_name) not sizeof(d_name)

 Attributes of a directory entry can be retrieved with stat() function call (or

lstat() for symbolic link entry)

 Directory stream - a sequence of all the directory entries in a particular

directory

POSIX:

Header file <dirent.h> defines DIR - a (possibly incomplete) type representing

a directory stream.

L.J. Opalski, slides for Operating Systems courses
10

Directory stream operations

DIR * opendir(const char *dirname); // opens and returns directory stream

int closedir (DIR *dirstream); // closing the directory stream

struct dirent * readdir (DIR *dirstream); // reading directory entry

Note: the pointer returned points to readdir maintained data buffer which may be

overwritten by another readdir() call on the same stream.

int readdir_r(DIR *restrict dirp,

 struct dirent *restrict entry,

 struct dirent **restrict result);

 // reading directory entry to a user specified buffer (entry)

 // with d_name field of at least {NAME_MAX}+1 bytes

void rewinddir (DIR *dirstream); // resetting the directory stream position

int telldir (DIR *dirstream); // reporting position in the stream

void seekdir (DIR *dirstream, long int pos); // setting stream pos.

L.J. Opalski, slides for Operating Systems courses
11

Example

Example of simple current working directory listing code:
#include <stdio.h>

#include <stdlib.h>

#include <dirent.h>

#include <sys/stat.h>

#include <errno.h>

#define ERR(source) (perror(source),\

 fprintf(stderr,"%s:%d\n",__FILE__,__LINE__), exit(EXIT_FAILURE))

int main(int argc, char** argv) {

 DIR *dirp;

 struct dirent *dp;

 struct stat filestat;

 if (NULL == (dirp = opendir("."))) ERR("opendir");

 do {

 errno = 0;

 if ((dp = readdir(dirp)) != NULL) {

 if (lstat(dp->d_name, &filestat)) ERR("lstat");

 printf("%16s : %10zd B\n",dp->d_name, filestat.st_size);

 }

 } while (dp != NULL);

 if (errno != 0) ERR("readdir");

 if(closedir(dirp)) ERR("closedir");

 return EXIT_SUCCESS;

}

L.J. Opalski, slides for Operating Systems courses
12

Handling file links

int ret=link(const char *oldpath, const char *newpath)

 makes a new link to the existing file named by oldpath, under the new name
newpath

int ret=symlink(const char *oldpath, const char *newpath)

 makes a symbolic link to oldpath (does not have to exist) named newpath

int ret=readlink(const char *filename, char *buf,

 size_t size)

 gets the value of the symbolic link filename and stores it in a buffer buf of
given size.

int ret=rename(const char *old, const char *new)

 renames the file old to new.

int ret=unlink(const char *path) – deletes the file name path.

 The above functions return ret==0 on success or ret== -1 otherwise
(error code in errno).

