Input/Output — part 2

Last modification date: 05.11.2018

L.J. Opalski, slides for Operating Systems courses

Low-level synchronous I/O

open — R, W, RW modes, blocking vs unblocking access

File attributes: chmod, fchmod, fstat, Istat, open (for a new file),
stat, umask

close — closing access (file session)

read/write — sequential I/O operations

File positioning for random access: Iseek

Signals and I/O operations

Duplication of file descriptors: dup, dup?2

Descriptor tables, table of open files, table of i-nodes
Testing ,descriptor activity”: select

L.J. Opalski, slides for Operating Systems courses

UNIX file attributes

file type modifier <---- access rights >
151141312 11| 10 9 _ 5| 4| 3| 2 1 0
SUIDSGID R W X
SVTX user/owner (u) group (1) other ()
File attribute Value (octal) | Value (symbolic)
FIFO 0010000 S_IFIFO
Special character device | 0020000 S IFCHR
Directory 0040000 S _IFDIR
Special block device 0050000 S IFBLK
Ordinary file 0100000 S IFREG
Symbolic link 0120000 S IFLNK
Socket 0140000 S_IFSOCK

L.J. Opalski, slides for Operating Systems courses

Opening file session

® Opening access to an existing file (opening a new file session):
int fd = open(const char *pathname, int oflagqg);
oflag determines access mode to a file with path pathname; logic sum of:

O _RDONLY :read only access

O_WRONLY : write only access

O _RDWR . read-write access

O_TRUNC . file truncated to O length before use

O _NONBLOCK, O_NODELAY : non-blocking access mode

O _APPEND :writing at the end of (appending) an existing file
Returned value fd depends on the result of the function call:

<0 . error exit (error code is specified with a global variable errno)

>=0 :unique (per process) file descriptor; file position is set at the file
beginning, except for O_APPEND option, when it specifies the file end

Note: shell typically grants its children access to descriptors 0, 1, 2 — for standard
iInput, output, error 1/O operations (respectively)

4 L.J. Opalski, slides for Operating Systems courses

Opening file session — cont.

® Opening access to possibly non-existing file:
int fd = open(const char *pathname, int oflag, mode t mode);
oflag determines access mode to a file with given path (pathname) as follows:

O _CREAT . creates a new file (if not existing) or opens existing file

O CREAT | O EXCL :creates a new file (fails if it exists)

mode determines access rights to a new file (RWX-RWX-RWX)
Effective access rights depend on current umask of the process executing open:

mode & ~umask
Typically umask==0022, which zeroes W bits for a group and ,other users”.

UID/GID for a new file == effective UID/GID of a process executing open (), i.e. if
No SUID/SGID bit was used (nor seteuid () /seteuid executed) they are
equal to effective EUID/EGID of a process which executed exec () ; otherwise

they are equal to UID/GID of the owner of the executable which created the
process which called open.

L.J. Opalski, slides for Operating Systems courses

Synchronous file I/O operations — cont.

® Retrieving attributes of a file with given path (pathname) or related to given file
descriptor (£d):

int ret=stat(const char *pathname, struct stat *buf);
int ret=lstat (const char *pathname, struct stat *buf);
int ret=fstat(int fd, struct stat *buf);

If ret==0, then the function fill the structure pointed at by buf file attributes (for
lstat — attributes of a symbolic link file, not the target file).

Important fields of struct stat:

mode t st mode : file attributes

ino t st ino . i-node number (file serial number, unique for a device)
dev_t st _dev : identifier of a device which stores the file

nlink t st nlink :the number of hard links to the file

uid t st uid : the user ID of the file's owner

gid t st gid : the group ID of the file

off t st size : the size of a regular file in bytes, for symbolic links - the

Iength of the file name the link refers to
time t st mtime : the time of the last modification to the contents of the file

6 L.J. Opalski, slides for Operating Systems courses

Synchronous file I/O operations — cont.

ssize t ret = read(int fd, void *buf, size t nbyte)

If ret>0, then read () stores in a buffer of nbyte bytes pointed at with buf
exactly ret<=nbyte bytes, which were read from a file associated with the
given descriptor £d, the reading started from the current file position at the
moment of open () call. The file position is incremented by ret.

If ret==0, then no more data (end of file condition)

If ret<0 (ret==-1), then the buffer has not been modified and the return code is
specified with errno. Important errno values (see read (2)):

EBADF : invalid descriptor or file not opened for reading

EINTR :read operation was interrupted by a signal while it was blocked
waiting for completion

EAGAIN : if the O NONBLOCK flag is set for the file - read () can return
immediately without reading any data and report this error

L.J. Opalski, slides for Operating Systems courses

Synchronous file I/O operations — cont.

ssize t ret=write(int fd, const void *buf, size_ t nbyte)

If ret>=0, then exactly ret<=nbyte bytes was written from the buffer (of
Size nbyte) pointed at by buf to the file related to descriptor £d, starting
from the file position which was current at the moment of open () call. The
file position is incremented by ret.

If ret<0 (ret==-1), then the write attempt was not successful, and the
reason code is stored in errno. Important error codes (see write (2)):

EBADF : invalid descriptor or file not opened for writing

EAGAIN : normally write () blocks, until finished, but if the O NONBLOCK
flag is set for the file write () can return immediately without writing any
data and report this error — if no write could have been performed
immediately

EINTR :write operation was interrupted by a signal while it was blocked
waiting for completion

EPIPE : trying to write to a pipe or FIFO that isn't open for reading by any
process (the system also sends SIGPIPE signal)

L.J. Opalski, slides for Operating Systems courses

Synchronous file I/O operations — cont.

Random access to a file

off t ret = lseek(int fd, off t offset, int whence)
lseek () Iis used to change the file position of the file with descriptor £d4

whence specifies how the offset should be interpreted:

SEEK SET . a count of characters from the beginning of the file
SEEK CUR : a count of characters from the current file position
SEEK END : a count of characters from the end of the file

The function returns (ret) the resulting file position, measured in bytes
from the beginning of the file or (of£ t)-1 in case of failure (error code
INn errno - see lseek (2)).

L.J. Opalski, slides for Operating Systems courses

Closing file session

int ret = close(int £d)

The function breaks association of the file descriptor £d with a file; returning O if
successful. If ret<0 (ret==-1), then the error code is in errno. Important
error codes (see close (2)):

EBADF invalid descriptor
EINTR: The close call was interrupted by a signal.

10 L.J. Opalski, slides for Operating Systems courses

I/O operations — data structures (UNIX)

Example Process A executes:

=open(“/etc/passwd”,O_RDONLY);

fd2=open(’local’,O_RDWR);

fd3=open(’/etc/passwd”’,0_WRONLY);

oO~NO AP WN-=-0

file descriptor table

of process A

open file table i-node table
Counter Counter

I =
1 RDONLY 2 (/etc/passwd)
Counter
1 RDWR

11

Counter
1 (local)

L.J. Opalski, slides for Operating Systems courses

I/O operations — data structures (UNIX)

Przykiad Process B executes:
fd1=open(’/etc/passwd”’,O_RDONLY);
fd2=open("private”,O_RDONLY);

file descriptor table file descriptor
of process B table of process A

0

1

2

3

6

7 N\

8 N

12

open file table i-node table
Counter Counter

1 RDONLY 3 (/etc/passwd)
Counter

1 RDWR

Counter
1 (local)

Counter
1 (private)

L.J. Opalski, slides for Operating Systems courses

Synchronous file I/O operations — cont.

int dup (int old)

This function copies descriptor old to the first available descriptor number
(the first number not currently open).

int dup2 (int old, int new)

This function copies the descriptor o1ld to descriptor number new

The functions return the new descriptor (>=0) or —1 if not successful (error
code in errno).

13 L.J. Opalski, slides for Operating Systems courses

I/O operations — data structures (UNIX)

Example Process B executes:

fd1=open(’/etc/passwd’,O_RDONLY); open file table i-node table

fd2=open("private”,O_RDONLY);
fd3=dup(fdl);

file descriptor file descriptor CRILED —> Counter
table of table of 1 RDONLY 3 (/etc/passwd)
process B process A

0

1 Counter

2 1 RDWR

3

Counter
1 (local)

Counter
1 (private)

L.J. Opalski, slides for Operating Systems courses

14

I/O operations — data structures (UNIX)

Example Process B executes:
fd1l=open(’/etc/passwd’,O_RDONLY);

fd2=open(’private”,0_RDONLY); open file table i-node table
fd3=dup(fdl);
fork(); /* creation of a child */
file descriptor file descriptor Counter Counter
file descriptor table of a table of 1 RDONLY 3 (letc/passwd)
table of child of process A
process B process B
0
1 Counter
2 1 RDWR
3

15

Counter
1

(local)

Counter
1

(private)

L.J. Opalski, slides for Operating Systems courses

Synchronous file I/O operations — cont.

Summary:

" |f a process opens several times the same file, then the descriptors point at
different elements of the open file table, but the same element of i-node tables
IS used to refer to the file items.

" Two elements of a file descriptor table can point at the same element of the
open file table, when dup () (or dup2 ()) was used to make one of the

descriptors out of the other.

" Information on the current file position is stored in the open file table, so it is
common to descriptors that point at the same element of the open file table.

" In traditional UNIX elements of two different file descriptor tables can point at
the same open file table only when one process is a descendant of the other.
In such a case changes of the file positions by one process are seen by the
other process. In modern UNIX-like systems the file positions for these
processes can be found disjoint.

16 L.J. Opalski, slides for Operating Systems courses

Synchronous file I/O operations — cont.

int ret = select(int n, fd set *readfds, fd set *writefds,
fd set *exceptfds, struct timeval *timeout)

The function blocks the calling process until there is activity on any of the specified
sets of file descriptors, or until the timeout period has expired

readfds : mask of read descriptors

writefds : mask of write descriptors

exceptfds : mask of descriptors which can receive Out Of Band (OOB) data
n : the number of descriptor (in mask) to check

timeout: if NULL => indefinite wait, otherwise a pointer at a timeout structure
ret >0 the total number of ready file descriptors in all of the bit masks

Macros for bit mask manipulation
FD ZERO (fd set *set); -zeroes a mask pointed at by set

FD SET (int fd, fd set *set); - sets specified bit (nr £d) in a mask (pointed
with set)

FD CLR(int fd, fd set *set); - clears specified bit in the mask
FD ISSET (int fd, fd set *set); - checks if the specified bit of the mask is set

17 L.J. Opalski, slides for Operating Systems courses

Synchronous file I/O operations — cont.

[* copying data from 2 inputs (fd1,fd2) to the standard output (code excerpt) */
fd set readfds;

int fdl= .., fd2= ..., maxfd, ret,

, towrite;

for(;;){
maxfd= (fdl>fd2) ? fdl : £d2;

if (maxfd<0) break; /I no descriptor can be active (end of copying)
FD ZERO (&readfds) ;

if (fd1>=0) FD_SET (fdl, sreadfds) ;

if (£d2>=0) FD_SET (fd2, &readfds);

if (select (maxfd+1, &readfds,0,0,0) < 0) {// blocking check of descriptors
1f (errno==EINTR) continue; else { perror ("select"); ... }

}

if (fd1>=0 && FD_ISSET (fdl, &readfds)) {//is descriptor ready?

if((towrite=read (fdl,buf,sizeof(buf))) < 0)Y{ ; ... }/Illerror?
if (towrite>0) {

p=buf;

while (towrite>0) {// note: write might not output all towrite bytes
ret=write (STDOUT FILENO,p,towrite); //inone call
if (ret<0){... } Illerror?
towrite -= ret; p += ret;

}

} else {/l towrite<=0
close (fdl),; fdl=-1;
fprintf (stderr, ,End of data 1\n");

/I Similar code for fd2 descriptor

18 L.J. Opalski, slides for Operating Systems courses

Miscellaneous

STDIN FILENO, STDOUT FILENO, STDERR FILENO - names for descriptor
files beneath the standard streams: stdin, stdout, stderr (traditionally:

0,1, 2)
FILE *fdopen(int fildes, const char *mode) ;

associates a stream with a file descriptor £ildes. The mode of the stream
(r/rb, w/wb, a/ab, r+/rb+, w+/wb+, a+/ab+) should be allowed by the file access

mode of the open file description to which £ildes refers.

int fileno(FILE *stream) ;
maps a stream pointer to a file descriptor
int fsync(int fildes) ;

Waits until data associated with the open file descriptor £ildes is written to
device. Note: void sync (void) ; waits for all descriptors to synchronize.

19 L.J. Opalski, slides for Operating Systems courses

