
L.J. Opalski, slides for Operating Systems courses
1

Last modification date: 05.11.2018

Input/Output – part 2

L.J. Opalski, slides for Operating Systems courses
2

Low-level synchronous I/O

▪ open – R, W, RW modes, blocking vs unblocking access

▪ File attributes: chmod, fchmod, fstat, lstat, open (for a new file),

stat, umask

▪ close – closing access (file session)

▪ read/write – sequential I/O operations

▪ File positioning for random access: lseek

▪ Signals and I/O operations

▪ Duplication of file descriptors: dup, dup2

▪ Descriptor tables, table of open files, table of i-nodes

▪ Testing „descriptor activity”: select

L.J. Opalski, slides for Operating Systems courses
3

UNIX file attributes

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

file type modifier <---- access rights --------------------->

R W X R W X R W X

user/owner (u) group (g) other (o)

SUID
 SGID
 SVTX

File attribute Value (octal) Value (symbolic)

FIFO 0010000 S_IFIFO

Special character device 0020000 S_IFCHR

Directory 0040000 S_IFDIR

Special block device 0050000 S_IFBLK

Ordinary file 0100000 S_IFREG

Symbolic link 0120000 S_IFLNK

Socket 0140000 S_IFSOCK

L.J. Opalski, slides for Operating Systems courses
4

Opening file session

▪ Opening access to an existing file (opening a new file session):

int fd = open(const char *pathname, int oflag);

oflag determines access mode to a file with path pathname; logic sum of:

O_RDONLY : read only access

O_WRONLY : write only access

O_RDWR : read-write access

O_TRUNC : file truncated to 0 length before use

O_NONBLOCK, O_NODELAY : non-blocking access mode

O_APPEND : writing at the end of (appending) an existing file

Returned value fd depends on the result of the function call:

<0 : error exit (error code is specified with a global variable errno)

>=0 : unique (per process) file descriptor; file position is set at the file
beginning, except for O_APPEND option, when it specifies the file end

Note: shell typically grants its children access to descriptors 0, 1, 2 – for standard
input, output, error I/O operations (respectively)

L.J. Opalski, slides for Operating Systems courses
5

Opening file session – cont.

▪ Opening access to possibly non-existing file:

int fd = open(const char *pathname, int oflag, mode_t mode);

oflag determines access mode to a file with given path (pathname) as follows:

O_CREAT : creates a new file (if not existing) or opens existing file

O_CREAT | O_EXCL : creates a new file (fails if it exists)

mode determines access rights to a new file (RWX-RWX-RWX)

Effective access rights depend on current umask of the process executing open:

mode & ~umask

Typically umask==0022, which zeroes W bits for a group and „other users”.

UID/GID for a new file == effective UID/GID of a process executing open(), i.e. if

no SUID/SGID bit was used (nor seteuid()/seteuid executed) they are

equal to effective EUID/EGID of a process which executed exec(); otherwise

they are equal to UID/GID of the owner of the executable which created the

process which called open.

L.J. Opalski, slides for Operating Systems courses
6

Synchronous file I/O operations – cont.

▪ Retrieving attributes of a file with given path (pathname) or related to given file
descriptor (fd):

int ret=stat(const char *pathname, struct stat *buf);

int ret=lstat(const char *pathname, struct stat *buf);

int ret=fstat(int fd, struct stat *buf);

If ret==0, then the function fill the structure pointed at by buf file attributes (for
lstat – attributes of a symbolic link file, not the target file).

Important fields of struct stat:

mode_t st_mode : file attributes

ino_t st_ino : i-node number (file serial number, unique for a device)

dev_t st_dev : identifier of a device which stores the file

nlink_t st_nlink : the number of hard links to the file

uid_t st_uid : the user ID of the file's owner

gid_t st_gid : the group ID of the file

off_t st_size : the size of a regular file in bytes, for symbolic links - the
length of the file name the link refers to

time_t st_mtime : the time of the last modification to the contents of the file

L.J. Opalski, slides for Operating Systems courses
7

Synchronous file I/O operations – cont.

ssize_t ret = read(int fd, void *buf, size_t nbyte)

If ret>0, then read() stores in a buffer of nbyte bytes pointed at with buf
exactly ret<=nbyte bytes, which were read from a file associated with the
given descriptor fd; the reading started from the current file position at the
moment of open() call. The file position is incremented by ret.

If ret==0, then no more data (end of file condition)

If ret<0 (ret==-1), then the buffer has not been modified and the return code is
specified with errno. Important errno values (see read(2)):

EBADF : invalid descriptor or file not opened for reading

EINTR : read operation was interrupted by a signal while it was blocked
waiting for completion

EAGAIN : if the O_NONBLOCK flag is set for the file - read() can return
immediately without reading any data and report this error

L.J. Opalski, slides for Operating Systems courses
8

Synchronous file I/O operations – cont.

ssize_t ret=write(int fd, const void *buf, size_t nbyte)

If ret>=0, then exactly ret<=nbyte bytes was written from the buffer (of

size nbyte) pointed at by buf to the file related to descriptor fd, starting

from the file position which was current at the moment of open() call. The

file position is incremented by ret.

If ret<0 (ret==-1), then the write attempt was not successful, and the

reason code is stored in errno. Important error codes (see write(2)):

EBADF : invalid descriptor or file not opened for writing

EAGAIN : normally write() blocks, until finished, but if the O_NONBLOCK

flag is set for the file write() can return immediately without writing any

data and report this error – if no write could have been performed

immediately

EINTR : write operation was interrupted by a signal while it was blocked

waiting for completion

EPIPE : trying to write to a pipe or FIFO that isn't open for reading by any
process (the system also sends SIGPIPE signal)

L.J. Opalski, slides for Operating Systems courses
9

Synchronous file I/O operations – cont.

Random access to a file

off_t ret = lseek(int fd, off_t offset, int whence)

lseek() is used to change the file position of the file with descriptor fd

whence specifies how the offset should be interpreted:

SEEK_SET : a count of characters from the beginning of the file

SEEK_CUR : a count of characters from the current file position

SEEK_END : a count of characters from the end of the file

The function returns (ret) the resulting file position, measured in bytes

from the beginning of the file or (off_t)-1 in case of failure (error code

in errno - see lseek(2)).

L.J. Opalski, slides for Operating Systems courses
10

Closing file session

int ret = close(int fd)

The function breaks association of the file descriptor fd with a file; returning 0 if
successful. If ret<0 (ret==-1), then the error code is in errno. Important
error codes (see close(2)):

EBADF: invalid descriptor

EINTR: The close call was interrupted by a signal.

L.J. Opalski, slides for Operating Systems courses
11

I/O operations – data structures (UNIX)

Example Process A executes:

fd1=open(”/etc/passwd”,O_RDONLY);

fd2=open(”local”,O_RDWR);

fd3=open(”/etc/passwd”,O_WRONLY);

i-node table

Counter

2 (/etc/passwd)

Counter

1 (local)

open file table

Counter

1 RDONLY

Counter

1 RDWR

Counter

1 WRONLY

0
1
2
3
4
5
6
7
8

file descriptor table

of process A

L.J. Opalski, slides for Operating Systems courses
12

I/O operations – data structures (UNIX)

Przykład Process B executes:

fd1=open(”/etc/passwd”,O_RDONLY);

fd2=open(”private”,O_RDONLY);

0
1
2
3
4
5
6
7
8

i-node table

Counter

3 (/etc/passwd)

Counter

1 (local)

open file table

Counter

1 RDONLY

Counter

1 RDWR

Counter

1 WRONLY

file descriptor

table of process A

file descriptor table

of process B

Counter

1 RDONLY

Counter

1 RDONLY

Counter

1 (private)

L.J. Opalski, slides for Operating Systems courses
13

Synchronous file I/O operations – cont.

int dup (int old)

This function copies descriptor old to the first available descriptor number

(the first number not currently open).

int dup2 (int old, int new)

This function copies the descriptor old to descriptor number new

The functions return the new descriptor (>=0) or –1 if not successful (error
code in errno).

L.J. Opalski, slides for Operating Systems courses
14

I/O operations – data structures (UNIX)

Example Process B executes:

fd1=open(”/etc/passwd”,O_RDONLY);

fd2=open(”private”,O_RDONLY);

fd3=dup(fd1);

0

1

2

3

4

5

6

7

8

i-node table

Counter
3 (/etc/passwd)

Counter
1 (local)

open file table

Counter
1 RDONLY

Counter
1 RDWR

Counter
1 WRONLY

file descriptor
table of
process A

file descriptor
table of
process B

Counter
2 RDONLY

Counter
1 RDONLY

Counter
1 (private)

L.J. Opalski, slides for Operating Systems courses
15

I/O operations – data structures (UNIX)

Example Process B executes:

fd1=open(”/etc/passwd”,O_RDONLY);

fd2=open(”private”,O_RDONLY);

fd3=dup(fd1);

fork(); /* creation of a child */

i-node table

Counter
3 (/etc/passwd)

Counter
1 (local)

open file table

Counter
1 RDONLY

Counter
1 RDWR

Counter
1 WRONLY

0

1

2

3

4

5

6

7

8

file descriptor
table of
process A

file descriptor
table of
process B

Counter
4 RDONLY

Counter
2 RDONLY

Counter
1 (private)

file descriptor
table of a
child of
process B

L.J. Opalski, slides for Operating Systems courses
16

Synchronous file I/O operations – cont.

Summary:

▪ If a process opens several times the same file, then the descriptors point at

different elements of the open file table, but the same element of i-node tables

is used to refer to the file items.

▪ Two elements of a file descriptor table can point at the same element of the
open file table, when dup() (or dup2()) was used to make one of the

descriptors out of the other.

▪ Information on the current file position is stored in the open file table, so it is

common to descriptors that point at the same element of the open file table.

▪ In traditional UNIX elements of two different file descriptor tables can point at

the same open file table only when one process is a descendant of the other.

In such a case changes of the file positions by one process are seen by the

other process. In modern UNIX-like systems the file positions for these

processes can be found disjoint.

L.J. Opalski, slides for Operating Systems courses
17

Synchronous file I/O operations – cont.

int ret = select(int n, fd_set *readfds, fd_set *writefds,

fd_set *exceptfds, struct timeval *timeout)

The function blocks the calling process until there is activity on any of the specified
sets of file descriptors, or until the timeout period has expired

readfds : mask of read descriptors

writefds : mask of write descriptors

exceptfds : mask of descriptors which can receive Out Of Band (OOB) data

n : the number of descriptor (in mask) to check

timeout: if NULL => indefinite wait, otherwise a pointer at a timeout structure

ret >0 the total number of ready file descriptors in all of the bit masks

Macros for bit mask manipulation

FD_ZERO(fd_set *set); - zeroes a mask pointed at by set

FD_SET(int fd, fd_set *set); - sets specified bit (nr fd) in a mask (pointed
with set)

FD_CLR(int fd, fd_set *set); - clears specified bit in the mask

FD_ISSET(int fd, fd_set *set); - checks if the specified bit of the mask is set

L.J. Opalski, slides for Operating Systems courses
18

Synchronous file I/O operations – cont.

/* copying data from 2 inputs (fd1,fd2) to the standard output (code excerpt) */
fd_set readfds;

int fd1= ..., fd2= ..., maxfd, ret, towrite;

. . .

for(;;){

maxfd=(fd1>fd2) ? fd1 : fd2;

if(maxfd<0) break; // no descriptor can be active (end of copying)
FD_ZERO(&readfds);

if(fd1>=0) FD_SET(fd1,&readfds);

if(fd2>=0) FD_SET(fd2,&readfds);

if(select(maxfd+1,&readfds,0,0,0) < 0){// blocking check of descriptors
if(errno==EINTR) continue; else { perror("select"); ... }

}

if (fd1>=0 && FD_ISSET(fd1,&readfds)){// is descriptor ready?
if((towrite=read(fd1,buf,sizeof(buf))) < 0){ ; ... } // error ?
if(towrite>0){

p=buf;

while(towrite>0){// note: write might not output all towrite bytes
ret=write(STDOUT_FILENO,p,towrite); // in one call
if(ret<0){... } // error ?
towrite -= ret; p += ret;

}

} else {// towrite<=0
close(fd1); fd1=-1;

fprintf(stderr,„End of data 1\n");

}

}

. . . // Similar code for fd2 descriptor
}

L.J. Opalski, slides for Operating Systems courses
19

Miscellaneous

STDIN_FILENO, STDOUT_FILENO, STDERR_FILENO - names for descriptor

files beneath the standard streams: stdin, stdout, stderr (traditionally:

0, 1, 2)

FILE *fdopen(int fildes, const char *mode);

associates a stream with a file descriptor fildes. The mode of the stream

(r/rb, w/wb, a/ab, r+/rb+, w+/wb+, a+/ab+) should be allowed by the file access

mode of the open file description to which fildes refers.

int fileno(FILE *stream);

maps a stream pointer to a file descriptor

int fsync(int fildes);

Waits until data associated with the open file descriptor fildes is written to

device. Note: void sync(void); waits for all descriptors to synchronize.

