
Lecture 2 - Filesystem API
Operating Systems 1

Warsaw University of Technology - Faculty of Mathematics and Information Science

User programs access the filesystem to store data on a persistent storage.

define an abstract
logical filesystem

model

OS responsibilities

- what is a file?
- how it looks like inside?
- what are file attributes?
- are files structured? how?

- create file
- open/close file?
- delete file
- read/write from file
- create directories?
...

- map the logical model
to a physical representation
- efficiently
- safely
- using variety of hardware

provide a syscall
interface to it

implement this
abstract interface

0x00, 0x0b, 0x0a, 0x00
0x01, 0x0b, 0x0a, 0x00
0x02, 0x0b, 0x0a, 0x00
0xff, 0xff, 0xff, 0xff
0x0a, 0x0b, 0x0c, 0x0d
0x00, 0x00, 0x00, 0x01
0x00, 0x00, 0x00, 0x02
0x00, 0x00, 0x00, 0x03
0x00, 0x00, 0x00, 0x04
0x00, 0x00, 0x00, 0x05
0x00, 0x00, 0x00, 0x06
0x00, 0x00, 0x00, 0x07
0xff, 0xff, ...

record 1 - 32 bytes

none,
just bytes

varying length
records, i.e. lines

fixed size records

What is an abstract file?
many others

record 2 - 32 bytes

record 3 - 32 bytes

record 4 - 32 bytes

line 1 - "abc"

line 2 - "defg"

line 3 - "hijklmn"

line 4 - "op"

Internal
file structure

create()

How do I identify the file?

Can I change the position? Read/write/both?

What can I read/write? bytes? records? lines?

What can I do to it?

open()

read()

write()

seek()

delete()

truncate()

Do I need to open it before accessing the data?

What if someone else is also touching it?

How do I access the actual data?

Sequential access

open(file)
read(file, len)
write(file, len)
seek(file, offset)

file.txt

position

OS maintains position within file Here it's an application responsibility

Random (direct) access

read(file, offset, len)
write(file, offset, len)

What attributes does file have beyond data?

name

size

protection

timestamps

identifier

type

location

might also be a kept within the directory

logical and physical

who is the owner? who can access it?

when and how was it used?

does not change with renames

only if OS supports distinct file types

physical storage information

How are files organized?

a.txt

Flat - single directory in FS

alan

no naming clash

the directory

files

b.txt c.txt

2-level - Per-user directory

a.txt b.txt c.txt a.txt a.out

chris

traversal is fast, we can speak of relative and absolute paths now

Multi level - tree structure

binhome config

alan

a.txt b.txt c.txt a.txt a.out

chris sshd

info.txt

client server

cat sed httpd.conf

Acyclic graph structure

files can have multiple links (and paths), directories cannot!

binhome config

alan

a.txt b.txt c.txt a.txt meow

chris sshd

info.txt

client server

cat sed httpd.conf

Sharing semantics
In a multiprogramming scenario OS has to define how concurrent operations behave

Task A

write(100 bytes)

Writes might become visible immediately or after closing the file session

The system might simply disallow concurrent access - simple but inefficient

Otherwise it must at least protect the FS against corruption

Task B

write(20 bytes)

Task C

read(1 byte) = ?

files are just bytes
and grow when necessary

The POSIX filesystem
A concrete example of an abstract interface

0x00, 0x1A, 0xFF, 0xFF, 0x00

write(2 bytes)

new size

files require opening before any I/O

fd = open(file)
read(fd, buffer, size)
write(fd, buffer, size)
close(fd)

The system maintains file position
per open file session
There's both sequential and random
access API

read(2 bytes)
yields 0x00, 0x1A

File - an object that can be written to, or read from, or both.

0x01, 0x02

home root

alan chris

log env

cat perm

hey cat

dev

It's organized into a single acyclic tree

an inode

a root dir inode

directory inode's data is
a mapping to other inodes

non-directory inodes
can have multiple links

regular file inode
points to raw data

tty sda

POSIX file attributes
Each file has an inode containing metadata about the file

Device ID - ID of the device (FS) which this Inode belongs to

Inode number - FS unique ID of the file

File type and mode - a mode_t value encoding permissions and file type

Link count - a reference counter

User ID - owner UID

Group ID - owning group UID

Represented device - only if file is a special device file

File size - logical, in bytes

Preferred block size - for most efficient I/O

Number of blocks - number of allocated device blocks

Various Timestamps - access/modification/(birth)/status change

> man 7 inode

UNIX mode bits

0754

octal

0b111 0b101 0b100

T

bit 15

file type

mode_t val =

You can freely set SUID, SGID, SVTX with another octal digit.

You cannot set the file type but you can check it by inspecting the highest bits.

SGID SVTX R W X R W X R WTT T SUID

"sticky bits" owner access group access others access

bit 0

X

POSIX file types

The following mask values are defined for the file type:

S_IFMT 0170000 bit mask for the file type bit field

S_IFSOCK 0140000 socket
S_IFLNK 0120000 symbolic link
S_IFREG 0100000 regular file
S_IFBLK 0060000 block device
S_IFDIR 0040000 directory
S_IFCHR 0020000 character device
S_IFIFO 0010000 FIFO

this is what you usually expect

All of the above may be read from, written to, or both but these
operations are not necessarily mapped to hard drive operations

File session as seen by the kernel

0: stdin

...

Per-process
File Descriptor
Table

74859: (regfile)
size, timestamps,
device, operations

userspace kernel

1: stdout

2: stderr

User Task A

> ls -l /proc/<pid>/fd(info)

3: fptr

4: NULL

5: NULL

int fd = 3;
read(fd, ...);

mode: r
offset: 2
inode: 74859

...

...

System-Wide
Open Files Table

mode: w
offset: 0
inode: 4772

empty

4722: (vterm)
size, timestamps,
device, operations

mode: r
offset: 0
inode: 4772

...

...

...

System-Wide
Inode Table

The open() syscall

int fd = open(const char *pathname, int oflag, ...);

> man 3p open

unique
file descriptor

relative or
absolute file path

maybe more,
depends on oflag

The open flags determine how read/write's shall later behave

O_RDONLY - read only access, write() won't work
O_WRONLY - write only access, read() won't work
O_RDWR - read-write access, both will work

O_RDONLY | O_WRONLY means nothing !

The returned file descriptor is a unique per-process identifier of an open file passed
to following file-maniupulation syscalls.

Typically the shell automatically opens file descriptors 0, 1 and 2 (stdin, stdout and stderr) for each process.

open mode

file.bin

Newly opened file descriptors are positioned at the offset 0 (unless O_APPEND is used).

With O_APPEND position is automatically changed to the end prior to each write().
Files size automatically grows with each write that would go past the end of file.

offset = 0 offset = end

current pos after
read

jump!

before
write

fd = open("file.bin", O_RDWR | O_APPEND);
read(fd, ...);
write(fd, ...);

File position

file.bin

after
write

O_APPEND - write() always appends at the end
O_TRUNC - truncate file size to 0 bytes too
O_NONBLOCK - read/write won't block, even if operation can't complete immediately
O_CREAT - create file if not exists, requires mode parameter (...)
O_EXCL - use with O_CREAT, fail if file already exists

Open file.txt previously creating it if it doesn't exist:

Create and open pid.lock file but fail if it is already there:

oh look, the 3rd argument,
required with O_CREAT

we do not know if the file
was created or not

Bits set in umask are subtracted from mode bits supplied to open().

Open mode modifiers

open("file.txt", O_RDWR | O_CREAT, 0744);

open("pid.lock", O_RDWR | O_CREAT | O_EXCL, 0666); this is atomic, only one process
will succeed in creating the pid.lock

> man 3p umask

Closing the file session > man 3p close

int ret = close(int fildes);

0: stdin

...

74859: (regfile)
size, timestamps,
device, operations

1: stdout

2: stderr

User Task A

3: fptr

4: NULL

5: NULL

int fd = 3;
close(fd);

mode: r
offset: 2
inode: 74859

...

...

mode: w
offset: 0
inode: 4772

empty

4722: (vterm)
size, timestamps,
device, operations

mode: r
offset: 0
inode: 4772

Synchronous I/O syscalls

ssize_t nbyte = write(int fildes, const void *buf, size_t nbyte);

ssize_t nbyte = pwrite(int fildes, const void *buf, size_t nbyte, off_t offset);

where from where to how much

how many bytes were actually read/written
0 indicates end of file!

Sequential access API

size_t nbyte = read(int fd, void* buf, size_t nbyte);

ssize_t nbyte = pread(int fildes, void *buf, size_t nbyte, off_t offset);

> man 3p read
> man 3p write

Direct access API where in file

Scatter-gather I/O syscalls

ssize_t nbytes = readv(int fildes, const struct iovec *iov, int iovcnt);
ssize_t nbytes = writev(int fildes, const struct iovec *iov, int iovcnt);

> man 3p readv
> man 3p writev

Process memory

iov[0]
writev(fd, iov, 3)

iov[1]

iov[2]

Obtaining file attributes > man 3p fstatat

int fstatat(int fd, const char *restrict path,
struct stat *restrict buf, int flag);
int lstat(const char *restrict path, struct stat *restrict buf);
int stat(const char *restrict path, struct stat *restrict buf)

path or open fd where to put attributes

lstat() does not
follow symlinks

These functions just return information from the i-node structure sitting in the kernel space.

Moving through the file > man 3p lseek

off_t pos = lseek(int fildes, off_t offset, int whence);

Changing the system-maintained file position

which file desired position
(meaning depends on whence)

seek mode

Seek mode:

SEEK_SET - offset is relative to the beginning
SEEK_CUR - offset is relative to current position
SEEK_END - offset is relative to file end

This call might also be used to find out current position.
Seek allows jumping past the logical end of file.

pos after
jump

File descriptor cloning > man 3p dup

int fd = dup(int fildes);
int fd = dup2(int fildes, int fildes2);

what to clone desired clone value
new fd refering

to same thing as filedes

...

74859: (regfile)
size, timestamps,
device, operations

2: stderr
User Task A

3: fptr

4: fptr

5: NULL

int fd = 3;
int fd2 = dup(fd);

mode: r
offset: 2
inode: 74859

...

...

empty

...

...

...

DIR *opendir(const char *dirname);
int closedir (DIR *dirstream);

struct dirent *readdir(DIR *dirp);
int readdir_r(DIR *restrict dirp,
struct dirent *restrict entry,
struct dirent **restrict result);

void rewinddir (DIR *dirstream);
int telldir (DIR *dirstream);
void seekdir (DIR *dirstream, long int pos);

Directories usually cannot be accessed via regular open/read since they have a record structure.

an opaque type representing a directory stream

returns a pointer to a library allocated storage

a thread-safe version

equivalent of lseek()

Each directory entry contains a name and an i-node number.

Directory operations > man 3p readdir

Process root and current working directory

int chdir(const char *path);
char *getcwd(char *buf, size_t size);
int chroot(const char *path);

User Task A

root

cwd

Relative paths are resolved starting from cwd attribute.

> man 3p chdir
> man 3p getcwd
> man 2 chroot

home root

alan chris

log env

cat perm

hey cat

dev

tty sda

logint link(const char *path1, const char *path2);

link("log", "log2")

Creates a new directory entry path2 pointing to the same i-node as path1.
Increments a reference count stored in the i-node.

note: this is a non-atomic rename operation
use rename() to get atomicity

File link operations > man 3p link
> man 3p unlink

log2

log

unlink("log")

log2
int unlink(const char *path);

Removes a new directory entry path pointing to some i-node.
Decrements a reference count stored in the i-node.
If it drops to 0 then the i-node and associated data is removed.

Symlink operations

int symlink(const char *path1, const char *path2);

> man 3p symlink

log log.lnk

target: ./log

that's a broken symlink

int readlink(const char *filename, char *buf, size_t size)

symlink("log", "log.lnk")

Creates a new directory entry pointing to a new symlink i-node.
The symlink internally points to path1, which may or may not exist.
Does not increment a reference count stored in the target i-node.

log log.lnk

target: ./log

unlink("log")

Obtains target path stored in the symlink.

FILE stream

void* buffer

...

FILE *fopen(const char *restrict pathname, const char *restrict mode);

mode: r|w|a|r+|w+|a+returns an opaque structure pointer

A stream wraps low-level file descriptor and translates
I/O operations into read/write syscalls.

int fclose(FILE *stream);

Closing a stream writes any pending data, deallocates the buffer,
and closes the associated file descriptor.

C runtime automatically creates 3 streams: stdin, stdout and stderr.

Standard C streams
A more portable, weaker API wrapping POSIX filesystem API

int fd

> man 3p fopen
> man 3p fclose

not a syscall!

Stream operations are buffered to reduce syscall overhead.

FILE
stream

fileno()

fdopen()

You can extract underlying file descriptor

Or wrap raw fd into a buffered stream

This unlock full power of
formatting library even
if you have just a raw fd

3

Be careful not to share the same
descriptor in two different streams

will be double closed!

int fd

FILE stream

...

int fd = 3;

Mixing API > man 3p fileno
> man 3p fdopen

FILE stream

...

int fd = 3;

Buffering modes

int setvbuf(FILE *restrict stream, char *restrict buf, int type, size_t size)

own buffer or NULL,
then it is library-managed

note: must outlive the stream itself!

stream to operate on

_IONBF
_IOLBF

_IOBF

Manually forces write of pending data and discards any not cosumed read data.

Default buffering mode depends on underlying file type!

> man 3p setvbuf

Non-buffered - all operations are immediately translated to syscalls.

Line-buffered - flushed after reaching a newline character.

Fully-buffered - flushed after filling the buffer completely.

int fflush(FILE *stream); > man 3p fflush

Stream I/O functions

int fgetc(FILE *stream); int getc(FILE *stream);
int getchar(void);
int fputc(int c, FILE *stream);
int putc(int c, FILE *stream);

> man 3p <all>

int fprintf(FILE *stream, const char *template, ...);
int fscanf(FILE *stream, const char *template, ...);

Character by character:

String by string:

Raw:

size_t fread(void *ptr, size_t size, size_t nitems, FILE *stream);
size_t fwrite(void *ptr, size_t size, size_t nitems, FILE *stream);

char* fgets(char *buf, int buflen, FILE *stream);
int fputs(const char *s, FILE *stream);
int puts(const char *s);

With conversions:

Stream I/O functions

int fgetc(FILE *stream); int getc(FILE *stream);
int getchar(void);
int fputc(int c, FILE *stream);
int putc(int c, FILE *stream);

> man 3p <all>

int fprintf(FILE *stream, const char *template, ...);
int fscanf(FILE *stream, const char *template, ...);

Character by character:

String by string:

Raw (OS and FS dependent!):

size_t fread(void *ptr, size_t size, size_t nitems, FILE *stream);
size_t fwrite(void *ptr, size_t size, size_t nitems, FILE *stream);

char* fgets(char *buf, int buflen, FILE *stream);
int fputs(const char *s, FILE *stream);
int puts(const char *s);

With conversions:

Stream position functions

long int ftell(FILE *stream);
off_t ftello(FILE *stream); // for large files
int fgetpos(FILE *stream, fpos_t *position);

> man 3p <all>

int fseek(FILE *stream, long int offset, int whence);
int fseeko(FILE *stream, off_t offset, int whence); // for large files
void rewind(FILE *stream);
int fsetpos(FILE *stream, const fpos_t *position);

Setters:

Getters:

Small adjustments to position within the stream do not need an lseek syscall thanks to buffering.

file.txt buffered

seeking around buffer has low cost

Stream state functions

void clearerr(FILE *stream);
int feof(FILE *stream);
int ferror(FILE *stream);

> man 3p feof
> man 3p ferror

Each stream contains error and EOF indicator.

EOF and error indicator can be cleared only by calling clearerr()!
This means that stream after reaching the end won't capture concurrent file changes.

Stream synchronization

void flockfile(FILE *file);
int ftrylockfile(FILE *file);
void funlockfile(FILE *file);

> man 3p flockfile

Each stream contains a lock (mutex) allowing for safe-by-default multi-threaded access.

If applications wish to opt-out from this default synchronization overhead
it can do so with so called unlocked stdio.

int getc_unlocked(FILE *stream);
int getchar_unlocked(void);
int putc_unlocked(int c, FILE *stream);
int putchar_unlocked(int c);
...

you can ensure proper serialization
of series of reads/writes

> man 3 unlocked_sdio

