Lecture 2 - Filesystem API
Operating Systems 1

Warsaw University of Technology - Faculty of Mathematics and Information Science

User programs access the filesystem to store data on a persistent storage.

OS responsibilities

I N\

define an abstract

logical fil ; provide a syscall implement this

oglical Tiresysiem . . .

9 Y interface to it abstract interface
model

- what is a file? - create file - map the logical model

- how it looks like inside? - open/close file? to a physical representation

- what are file attributes? - delete file - efficiently

- are files structured? how? - read/write from file - safely

- create directories? - using variety of hardware

What is an abstract file?

—7 many others

Internal |----- -
none, — file structure \\\“vmVMglaEﬁh

just bytes records, i.e. lines
% fixed size records N

0x00, Ox0Qb, 0x0a, 0x00 line 1 - "abc"
0x01, Ox0Qb, 0x0a, 0x00 WV
0x02, 0x0b, 0x0a, 0x00 line 2 - "defg"
OxEf, Oxff, Oxff, OEf record 1 - 32 bytes : —
0x0a, 0x@0b, Ox0c, 0x@d record 2 - 32 bytes line 3 - "hijklmn
Ox00, 0x00, 0x00, Ox01 _ "

“ record 3 - 32 bytes line 4 op

0x00, 0x00, 0x00, Ox02
0x00, 0x00, 0x00, Ox03
0x00, 0x00, 0x00, 0x04 record 4 - 32 bytes
0x00, 0x00, 0x00, 0x05
0x00, 0x00, 0x00, Ox06
0x00, 0x00, 0x00, Ox07

Oxff, Oxff,

What can | do to it?

Ccreate() j\

) . . . >
[delete() e//How do | identify the file~

/

(open() J 4 Do | need to open it before accessing the data?

(seek() j< Can | change the position? Read/write/both?

(read() j\
hwrite() \://

_ J

What can | read/write? bytes? records? lines?

(truncate()) '6 What if someone else is also touching it?
\ J

How do | access the actual data?

Sequential access Random (direct) access
open(file)

re?d(fi}el len) read(file, offset, len)
write(file, len) write(file, offset, len)

seek(file, offset)

OS maintains position within file Here it's an application responsibility

f file.txt]
!

position

What attributes does file have beyond data?

name might also be a kept within the directory
identifier does not change with renames

type only if OS supports distinct file types
location physical storage information

size logical and physical

protection who is the owner? who can access it?

timestamps when and how was it used?

How are files organized?

Flat - single directory in FS 2-level - Per-user directory

the directory

(alan | chris|
[a.txt}[b.txt][c.txtj / / \

[/ \1/ N [a.txt](b.txtj(c.txtj [a.txtj &.ouﬂ
~0 0 0 /L N /N
files O Q O O O

N J

no nawﬁng clo\sl«

Multi level - tree structure

o

O (alan) (chris | [cat]['sed] (sshd][httpd. cont |

(a.ext](b.txt)(c. txt] (a-txt|[a.out] O O (client |(server 1 O

6 6d s 8¢

traversal is fast, we can speak of relative and absolute paths now

\
/

Acyclic graph structure

(info ta[h e |(bin)(contig)

(a.txt](b. tx tJL txt) (a-txt][meow | O (client |(server]

RS

files can have multiple links (and paths), directories cannot!

Sharing semantics

In @ multiprogramming scenario OS has to define how concurrent operations behave

()=

write(100 bytes)\l/ \l/ read(1 byte) = ?

[CC73)

/I\ write(20 bytes)

E0

The system might simply disallow concurrent access - simple but inefficient

Otherwise it must at least protect the FS against corruption

Writes might become visible immediately or after closing the file session

The POSIX filesystem

A concrete example of an abstract interface

File - an object that can be written to, or read from, or both.

files are just bytes files require opening before any I/O
and grow when necessary

fd = open(file)

read(2 bytes) read(fd, buffer, size)
ields 010@ Ox1A write(fd, buffer, size)
\l/ Y / new size\b close(fd)

[OXOO, Ox1A, OxFF, OxFF, OxOOJ(OxOl, 0x02j

The system maintains file position

ite(2 byt)/I\ per open file session
write ytes There's both sequential and random

access API

It's organized into a single acyclic tree directory inode's data is

/ a mapping to other inodes

a root dir inode % O»(home)(root)(dev)

an inode i/ \[/
/ l - 0v
TERGR | &
\L non-directory inod
i]) %,) (\l/) % < can L\o«\f—e mul:{iiple_ l:\is
on O @
regular file inode
points to raw data

POSIX file attributes

Each file has an inode containing metadata about the file

Device ID - ID of the device (FS) which this Inode belongs to

Inode number - FS unique ID of the file

File type and mode - a mode_t value encoding permissions and file type
Link count - a reference counter

User ID - owner UID

Group ID - owning group UID

Represented device - only if file is a special device file

File size - logical, in bytes

Preferred block size - for most efficient I/O

Number of blocks - number of allocated device blocks

Various Timestamps - access/modification/(birth)/status change

UNIX mode bits

octal

y
mode_t val = (754

2 b T

obl11 0b101 0b100

I e)ememd RO R

file type "sticky bits" owner access group access others access

You can freely set SUID, SGID, SVTX with another octal digit.

You cannot set the file type but you can check it by inspecting the highest bits.

POSIX file types

The following mask values are defined for the file type:
S_IFMT 0170000 bit mask for the file type bit field

S_IFSOCK 0140000 socket
S_IFLNK 0120000 symbolic link
S_IFREG 0100000 regular file —

S_IFBLK 0060000 block device T

S_IFDIR 0040000 directory this is what you usua“y expect
S_TIFCHR 0020000 character device

S_IFIFO 0010000 FIFO

All of the above may be read from, written to, or both but these
operations are not necessarily mapped to hard drive operations

File session as seen by the kernel

//User Task

int fd = 3;
read(fd, ..

&

I

A\

\

/

<—userspace

Per-process

> 1s -1 /proc/<pid>/fd(info)

System-Wide

System-Wide

File Descriptor Open Files Table Inode Table
Table
(mode: r)
- \ offset: 0 e
@: stdin "”’/;;? inode: 4772 \\figi
> ’ \ 4/ 4722: (vterm)
1: stdout -—====§;>/aode: w) size, timestamps,
> <”¢,,%;> offset: 0 ///;37 device, operations
I 2: stderr : :
. ;) Kinode. 4772 D
§\\T$£§s\3‘ fptr ’ — (mode: r)
' > L offset: 2 74859: (regfile)
40 NULL | inode: 74859 | ——=>|size, timestamps,
- ~/ device, operations
5: NULL)
empty
e y
kernel ——

The open) syscall

int fd = open(const char *pathname, int oflag, ...);
unique relative or open mode maybe wore,
file descriptor absolute file path depends on oflag

The open flags determine how read/write's shall later behave

O_RDONLY - read only access, write() won't work
O_WRONLY - write only access, read() won't work O_RDONLY | O_WRONLY means nothing !
O_RDWR - read-write access, both will work

The returned file descriptor is a unique per-process identifier of an open file passed
to following file-maniupulation syscalls.

Typically the shell automatically opens file descriptors O, 1 and 2 (stdin, stdout and stderr) for each process.

File position

(s10.001)
! !

offset = 0 offset = end

Newly opened file descriptors are positioned at the offset O (unless O_APPEND is used).
Files size automatically grows with each write that would go past the end of file.

With O_APPEND position is automatically changed to the end prior to each write().

fd = open("file.bin", O_RDWR | O_APPEND);
read(fd, ...);

/F\j/r\jump!j/rw‘\

current pos after before after
read write write

Open mode modifiers

O_APPEND - write() always appends at the end
O_TRUNC - truncate file size to @ bytes too
O_NONBLOCK - read/write won't block, even if operation can't complete immediately
O_CREAT - create file if not exists, requires mode parameter (...)
O_EXCL - use with O_CREAT, fail if file already exists
we do not know if the file

Open file.txt previously creating it if it doesn't exist: / was created or not

open("file.txt", O_RDWR | O_CREAT, 0744); oh look, the 3rd argument,
required with O_CREAT

Create and open pid.lock file but fail if it is already there: /

this is atowmic, only one process
will succeed in creating the pid.lock

Bits set in umask are subtracted from mode bits supplied to open(). > man 3p umask

open("pid.lock", O_RDWR | O_CREAT | O_EXCL, 0666); <

Closing the file session

int ret = close(int fildes);

(mode: r)
- \/ offset: 0
/User Task A\ @: stdin inode: 4772 \
> g - 4/ 4722: (vterm)
1: stdout =====5E§>(a°de: w) size, timestamps,
> < : device, operations
p ___—— offset: 0 ///;77 !
int fd = 3; 2: stderr inode: 4772
close(£fd); :§§“~\f§§§f
; yfﬂ/\ﬂode: r RN
p offset: 74859: (regfile
\4: NULL J inode 74850 | —>|size, timestamps,
f device, operations
_ J 5: NULL]

empty

> man 3p read

Synchronous I/O syscalls

> man 3p write

Sequential access API

where from where to how wmuch

N \ y

size_t nbyte = read(int fd, void* buf, size_t nbyte);
X how many bytes were ac‘tua“y read/written

/ 0 indicates end of file!

ssize_t nbyte = write(int fildes, const void *buf, size_t nbyte);

Direct access API where in file

\

ssize_t nbyte = pread(int fildes, void *buf, size_t nbyte, off_t offset);

ssize_t nbyte = pwrite(int fildes, const void *buf, size_t nbyte, off_t offset);

_ > man 3p readv
Scatter-gather I/O syscalls

ssize_t nbytes
ssize_t nbytes

readv(int fildes, const struct iovec *iov, int iovcnt);
writev(int fildes, const struct iovec *iov, int iovcnt);

//'Process memory‘\\

(JS

.

writev(fd, iov, 3)
)

i/?ﬁ —)

iov[2]

~——

\ 71T\ /\

Obtaining file attributes

int fstatat(int fd, const char *restrict path,
struct stat *restrict buf, int flag);
int 1lstat(const char *restrict path, struct stat *restrict buf); <—— Istat() does not

int stat(const char *restrict path, struct stat *restrict buf) follow symlinks
path or open £d where to put attributes

These functions just return information from the i-node structure sitting in the kernel space.

Moving through the file

Changing the system-maintained file position

> man 3p lseek

off_t pos = lseek(int fildes, off_t offset, int whence);

7 =7 7

(oo% after which €ile desired position
Jump (me_oming o(e,(oeno(s on whence)
Seek mode:

SEEK_SET - offset is relative to the beginning
SEEK_CUR - offset is relative to current position
SEEK_END - offset is relative to file end

This call might also be used to find out current position.
Seek allows jumping past the logical end of file.

AN

seek mode

File descriptor cloning

int fd = dup(int fildes);

/////%57 int fd = dup2(int fildes, int fildes2);

new £d refering

to same tl«?ng os Fileoles what to clone desired clone value
//, ‘\\ 2: stderr | (mode: r N
User Task A > i offset: 2 .
——____% 3: fptr‘ 7}' inode: 74859 \ 74859: (r'egflle)
int fd = 3; — | - 4/////2%77\‘ / size, timestamps,
int fd2 = duP(fd);::=====%§>L4: fptr] 4) device, operations
_ - 5: NULL | empty

\ J K J

. . > man 3p readdir
Directory operations

Directories usually cannot be accessed via regular open/read since they have a record structure.

/ an opaque type repre_sant}ng a o(irectort/ stream

DIR *opendir(const char *dirname);

int closedir (DIR *dirstream);
K returns a po}nter to a libran/ allocated storage

struct dirent *readdir(DIR *dirp);

int readdir_r(DIR *restrict dirp,

struct dirent *restrict entry, < a thread-safe version
struct dirent **restrict result);

void rewinddir (DIR *dirstream); equivalent of lseek()

int telldir (DIR *dirstream); 455"——_——

void seekdir (DIR *dirstream, long int pos);

Each directory entry contains a name and an i-node number.

Process root and current working directory > man 3p chdir

> man 3p getcwd
> man 2 chroot

int chdir(const char *path);
char *getcwd(char *buf, size_t size);
int chroot(const char *path);

home r'oot dev

O—>(alq J(chrls cat tty sda

User Task A N

— —cwd C) O

Relative paths are resolved starting from cwd attribute.

a0 . > man 3p link
File link operations > e S maldlk

link(llloglll "1092“)

int link(const char *pathl, const char *path2); Q_>(109)[log?]

Creates a new directory entry path2 pointing to the same i-node as pathl.
Increments a reference count stored in the i-node. V

unlink("log")

O~)
W4

int unlink(const char *path);

Removes a new directory entry path pointing to some i-node.
Decrements a reference count stored in the i-node. \l/
If it drops to O then the i-node and associated data is removed.

S

note: this is a non-atomic rename ope_ration
use rename() to get atomicity

Symlink operations

int symlink(const char *pathl, const char *path2);

Creates a new directory entry pointing to a new symlink i-node.
The symlink internally points to pathl, which may or may not exist.
Does not increment a reference count stored in the target i-node.

int readlink(const char *filename, char *buf, size_t size)

Obtains target path stored in the symlink.

> man 3p symlink

symlink("log", "log.lnk")

O—>(log)(log.1nk)

Voo

O-)[target: ./log]
\l/ V -
~ -
~ -

unlink("log")

O—>[/1o{](log.lnk)
vy

C) O-)[target: ./log]
V =
~ -

~ -

—

that's o broken Symlink

Standard C streams

> man 3p fopen
_ _ > man 3p fclose
A more portable, weaker APIl wrapping POSIX filesystem API

\f—not a sysca“!

FILE *fopen(const char *restrict pathname, const char *restrict mode);

!

/L returns an opaque structure pointer mode: r|w|a|r+|w+|a+

A stream wraps low-level file descriptor and translates
I/O operations into read/write syscalls.

FILE st
Stream operations are buffered to reduce syscall overhead. (stream
[void* buffer

\
| J
int fclose(FILE *stream); [int fd J
J

Closing a stream writes any pending data, deallocates the buffer,
and closes the associated file descriptor. \\

C runtime automatically creates 3 streams: stdin, stdout and stderr.

Mixing API > man 3p fileno
> man 3p fdopen

You can extract underlying file descriptor

fileno()

X

This unlock full power of

X =fdopen()/K/ ‘Format‘ting lil:aran/ even

1S you have just a raw £d
Or wrap raw fd into a buffered stream

FILE stream FILE stream
Be careful not to share the same
_ , , int f£d = 3; int £d = 3;)
descriptor in two different streams

will be o(ou'ole closed!

Buffering modes > man 3p setvbuf

int setvbuf(FILE *restrict stream, char *restrict buf, int type, size_t size)

/ \ /!

own buffer or NULL,
then it is library-w\anage_o(
note: must outlive the stream itself!

stream to operate_ on

_JONBF Non-buffered - all operations are immediately translated to syscalls.
_JOLBF Line-buffered - flushed after reaching a newline character.
_JOBF Fully-buffered - flushed after filling the buffer completely.

int £flush(FILE *stream); > man 3p fflush

Manually forces write of pending data and discards any not cosumed read data.

Default buffering mode depends on underlying file type!

> man 3p <all>

Stream |I/O functions

Character by character:

int fgetc(FILE *stream); int getc(FILE *stream);
int getchar(void);

int fputc(int c, FILE *stream);

int putc(int c, FILE *stream);

String by string:

char* fgets(char *buf, int buflen, FILE *stream);
int fputs(const char *s, FILE *stream);
int puts(const char *s);

With conversions:

int fprintf(FILE *stream, const char *template, ...);
int fscanf(FILE *stream, const char *template, ...);

Raw:

size_t fread(void *ptr, size_t size, size_t nitems, FILE *stream);
size_t fwrite(void *ptr, size_t size, size_t nitems, FILE *stream);

Stream |I/O functions

> man 3p <all>

Character by character:

int fgetc(FILE *stream); int getc(FILE *stream);
int getchar(void);

int fputc(int c, FILE *stream);

int putc(int c, FILE *stream);

String by string:

char* fgets(char *buf, int buflen, FILE *stream);
int fputs(const char *s, FILE *stream);
int puts(const char *s);

With conversions:

int fprintf(FILE *stream, const char *template, ...);
int fscanf(FILE *stream, const char *template, ...);

Raw (OS and FS dependent!):

size_t fread(void *ptr, size_t size, size_t nitems, FILE *stream);
size_t fwrite(void *ptr, size_t size, size_t nitems, FILE *stream);

> man 3p <all>

Stream position functions

Getters:

long int ftell(FILE *stream);
off_t ftello(FILE *stream); // for large files
int fgetpos(FILE *stream, fpos_t *position);

Setters:
int fseek(FILE *stream, long int offset, int whence);
int fseeko(FILE *stream, off_t offset, int whence); // for large files

void rewind(FILE *stream);
int fsetpos(FILE *stream, const fpos_t *position);

Small adjustments to position within the stream do not need an lseek syscall thanks to buffering.

[file.txt ([J j

seeking around buffer has low cost

Stream state functions > man 3p feof

> man 3p ferror

Each stream contains error and EOF indicator.

void clearerr(FILE *stream);
int feof (FILE *stream);
int ferror(FILE *stream);

EOF and error indicator can be cleared only by calling clearerr()!
This means that stream after reaching the end won't capture concurrent file changes.

Stream synchronization > man 3p flockfile

Each stream contains a lock (mutex) allowing for safe-by-default multi-threaded access.

void flockfile(FILE *file);

int ftrylockfile(FILE *file); < you can ensure proper serialization

void funlockfile(FILE *file); of series of reads/writes

If applications wish to opt-out from this default synchronization overhead
it can do so with so called unlocked stdio.

> man 3 unlocked_sdio

int getc_unlocked(FILE *stream);

int getchar_unlocked(void);

int putc_unlocked(int c, FILE *stream);
int putchar_unlocked(int c);

