
Adaptation of Silberschatz, Galvin, Gagne slides for the textbook

„Applied Operating Systems Concepts”
1

Introduction

1. Operating system and computer system

2. Operating systems: goals and interface

3. Operating system structures

4. Computer system operations

L.J. Opalski, slides for „Operating Systems I” course

Last modification date: 20.09.2018

Adaptation of Silberschatz, Galvin, Gagne slides for the textbook

„Applied Operating Systems Concepts”
2

What is an operating system?

▪ No universally accepted definition. “Everything a vendor ships when you order an

operating system” is a good approximation (but it varies wildly)

▪ A program that acts as an intermediary between a user of a computer and the

computer hardware

▪ Resource allocator – manages computer system resources, decides between

conflicting requests for efficient and fair resource use

▪ Control program - controls execution of programs to prevent errors and

improper use of the computer

▪ Kernel – the one program running at all times on the computer

▪ Basic computer system software which:

▪ executes user programs and makes solving user problems easier

▪ makes the computer system convenient to use

▪ uses the computer hardware in an efficient manner

▪ Computer system software which:

▪ enables management of hardware and software resources of the system

▪ Creates a process execution environment which is appropriate for the assumed mode

of system operation

L.J. Opalski, slides for „Operating Systems I” course

Adaptation of Silberschatz, Galvin, Gagne slides for the textbook

„Applied Operating Systems Concepts”
3

Computer System Structure

1. Hardware – provides basic

computing resources (CPU,

memory, I/O devices)

2. Operating system - controls and

coordinates use of hardware among

various applications and users

3. Application programs – define the

ways in which the system resources

are used to solve the computing

problems of the users

4. Users - people, machines, other

computers

L.J. Opalski, slides for „Operating Systems I” course

Adaptation of Silberschatz, Galvin, Gagne slides for the textbook

„Applied Operating Systems Concepts”
4

Modes of operations

▪ Dominant mode of operation of computer system influences

significantly operating system architecture.

▪ Main modes of operation:

▪ off-line, batch

▪ on-line, interactive

▪ real-time

▪ Real systems typically support more than one mode of operation

(although to a different degree).

L.J. Opalski, slides for „Operating Systems I” course

Adaptation of Silberschatz, Galvin, Gagne slides for the textbook

„Applied Operating Systems Concepts”
5

Multiprogramming

▪ Single user cannot keep CPU and I/O devices busy at
all times

▪ Multiprogramming organizes jobs (code and data) so
(each) CPU/core always has one to execute

▪ A subset of total jobs in system is kept in memory

▪ One job selected and run via job scheduling

▪ When it has to wait (for I/O for example), OS switches
to another job

▪ Multiprogramming requires:

▪ Memory management – jobs have to have
allocated/deallocated separate physical memory
chunks, protected from unauthorized access

▪ CPU scheduling – assignment of processor(s) to
ready jobs is controlled with control commands
(shell)

▪ Shared devices are made available via a set of
system provided I/O procedures (functions)

L.J. Opalski, slides for „Operating Systems I” course

Adaptation of Silberschatz, Galvin, Gagne slides for the textbook

„Applied Operating Systems Concepts”
6

Time sharing and interactive systems

▪ Timesharing (multitasking) is logical extension in which CPU switches
jobs so frequently that users can interact with each job while it is running,
creating interactive computing

▪ Response time should be < 1 second

▪ Each user has at least one program executing in memory
process

▪ If several jobs ready to run at the same time  CPU scheduling

▪ If processes don’t fit in memory, swapping moves them in and out
to run

▪ Virtual memory allows execution of processes which are not
loaded completely into memory

▪ Interactive operation uses direct communication between user terminal
and a task which is driven by user commands. Because of slow
computer-human interaction timesharing is needed to provide overall
system efficiency.

L.J. Opalski, slides for „Operating Systems I” course

Adaptation of Silberschatz, Galvin, Gagne slides for the textbook

„Applied Operating Systems Concepts”
7

Real-time systems

▪ Real-time (RT) systems are used when rigid time requirements have been

placed on the operation of a processor or the flow of data.

▪ Hard RT systems.

▪ Time requirements have to be respected absolutely (they are

guaranteed). This is needed in time-critical industrial control, robotics, etc.

▪ Strict time requirements of RT are in conflict with requirements of

standard time-sharing ➔ hard real time operation cannot be strictly

implemented within a universal (multi-mode) system

▪ Rigid requirements prevent use of some cost-effective solutions like

virtual memory, dynamic loading and other techniques which introduce

unpredictable response time.

▪ Soft RT systems:

▪ Scheduling attempts to meet deadlines, but can occasionally violate them

in the interest of cost-effectiveness of the whole system.

▪ Soft RT can be useful in multimedia, virtual reality and other application

when time response performance is important but not safety-critical.

L.J. Opalski, slides for „Operating Systems I” course

Adaptation of Silberschatz, Galvin, Gagne slides for the textbook

„Applied Operating Systems Concepts”
8

Introduction

1. Operating system and computer system

2. Operating systems: goals and interface

3. Operating system structures

4. Computer system operations

L.J. Opalski, slides for „Operating Systems I” course

Adaptation of Silberschatz, Galvin, Gagne slides for the textbook

„Applied Operating Systems Concepts”
9

Operating system goals

▪ Execution of user and system programs and protection of user

data

▪ Users want convenience, ease of use and good performance (but

might not care about resource utilization)

▪ Shared computer (mainframe or minicomputer) must keep all

users happy ☺

▪ Handheld computers are resource poor ➔ optimized for usability

and battery life

▪ Efficient computer system resource management

▪ resource allocation/reclaiming

▪ planning resource use

▪ protection and security

▪ resource use accounting

▪ error handling

L.J. Opalski, slides for „Operating Systems I” course

Adaptation of Silberschatz, Galvin, Gagne slides for the textbook

„Applied Operating Systems Concepts”
10

Computer system resources

▪ Resources managed by operating system

▪ Processor(s), cores

▪ Memory and other devices of the computer system

▪ Information kept in the system

▪ Composition of system resources depends on the computing

environments the system belongs to

▪ Generic single user system

▪ Portal

▪ Network computer (thin client))

▪ Distributed computations (and network operating systems)

▪ Client-server computing (asymmetric relationship)

▪ Peer-to-peer (P2P) computing (symmetric relationship of peers)

▪ Computer system hosting virtual machines

▪ Cloud computing (computing, storage, apps as a service on a net)

▪ Real-time embedded systems

L.J. Opalski, slides for „Operating Systems I” course

Adaptation of Silberschatz, Galvin, Gagne slides for the textbook

„Applied Operating Systems Concepts”
11

Operating system services

L.J. Opalski, slides for „Operating Systems I” course

Adaptation of Silberschatz, Galvin, Gagne slides for the textbook

„Applied Operating Systems Concepts”
12

Concurrent resource use

▪ Multiprogramming and time-sharing demand safe and efficient sharing of

computer system resources among users and their jobs.

▪ Concurrent resource use is implemented with

▪ interrupts

▪ system means of communication and synchronization

▪ Multi-processor/multi-core architectures

▪ Degree of concurrency depends not only on hardware but also on OS properties:

▪ Symmetric Multiprocessing (SMP) – CPUs share all system and user job

related activities

▪ Asymmetric Multiprocessing – one master and many slave (worker) CPUs

▪ Access to shared resources is possible for user jobs only indirectly - by making

requests to the operating system via system calls.

▪ System functions form an interface between operating system and a running

program.

L.J. Opalski, slides for „Operating Systems I” course

Adaptation of Silberschatz, Galvin, Gagne slides for the textbook

„Applied Operating Systems Concepts”
13

API function vs system function

▪ System functions can be directly called from assembly language code.

▪ High-level languages enable access to shared resources with

▪ calls of language specific functions which make appropriate system

function call(s)

▪ System function wrappers, which are usually called Application Program

Interface (API) Popular APIs: Win32, POSIX API, JAVA API

L.J. Opalski, slides for „Operating Systems I” course

Adaptation of Silberschatz, Galvin, Gagne slides for the textbook

„Applied Operating Systems Concepts”
14

System function call from C

L.J. Opalski, slides for „Operating Systems I” course

A C language program call standard

output formatting function printf() ➔

The function stores formatted output to

a local buffer associated with the

standard output stream (stdout).

When the buffer is about to be full (or

on demand: fflush()) a call to a

system function is made (write() for

POSIX API) to move buffer content to

the destination device.

Adaptation of Silberschatz, Galvin, Gagne slides for the textbook

„Applied Operating Systems Concepts”
15

Sample Win32 i POSIX API functions

L.J. Opalski, slides for „Operating Systems I” course

Adaptation of Silberschatz, Galvin, Gagne slides for the textbook

„Applied Operating Systems Concepts”
16

Selected operating system API standards

▪ UNIX type systems:

▪ SVID (System V Interface Definition)

▪ 4.x BSD (Berkeley Software Distribution)

• POSIX (Portable Operating System Interface) – IEEE, ISO, The Open

Group. Status as of 2018: POSIX.1-2017 (IEEE Std 1003.1-2017)

– Base Definitions (XBD)

– Shell and Utilities (XCU)

– System Interfaces (XSH)

– Rationale (XRAT)

Separate: POSIX Conformance Test Suite

• Single Unix Specification (SUS) – family of standards for systems

qualified for the name „Unix” (93, 95, 98, 03). Basic components of

POSIX plus POSIX Certification Test Suite and the terminal

interface standard: CURSES. In all: 1742 interfaces.

▪ win16/win32/win64/winCE – Microsoft Windows APIs (WinAPIs) for its OSs

L.J. Opalski, slides for „Operating Systems I” course

Adaptation of Silberschatz, Galvin, Gagne slides for the textbook

„Applied Operating Systems Concepts”
17

Linux kernel interfaces

https://en.wikipedia.org/wiki/Linux_kernel_interfaces

L.J. Opalski, slides for „Operating Systems I” course

Linux API vs POSIX API

Linux API:

• Kernel internal API

• Kernel-user space API:

• System Call

Interface +

• GNU C Library
(glibc) wrapper

Adaptation of Silberschatz, Galvin, Gagne slides for the textbook

„Applied Operating Systems Concepts”
18

Introduction

1. Operating system and computer system

2. Operating systems: goals and interface

3. Operating system structures

4. Computer system operations

L.J. Opalski, slides for „Operating Systems I” course

Adaptation of Silberschatz, Galvin, Gagne slides for the textbook

„Applied Operating Systems Concepts”
19

Operating systems structure

▪Operating system code is huge, and so structuring is

important.

▪Structuring of systems evolved in time.

▪ Simple system (hardly structured)

▪ Monolithic kernel + plethora of system programs

▪ Layered design

▪ Microkernel + system code in userspace

▪ Hybrid systems

L.J. Opalski, slides for „Operating Systems I” course

Adaptation of Silberschatz, Galvin, Gagne slides for the textbook

„Applied Operating Systems Concepts”
20

Simple system: MS-DOS

▪ Single-tasking

▪ Shell invoked when system

booted

▪ Simple method to run program

(no process created)

▪ Single memory space

▪ Loads program into memory,

overwriting all but the kernel

▪ Program exit -> shell reloaded

at system startup running a program

L.J. Opalski, slides for „Operating Systems I” course

Adaptation of Silberschatz, Galvin, Gagne slides for the textbook

„Applied Operating Systems Concepts”
21

Old-style (monolithic) UNIX system

Two distinct parts of the system.

▪ Monolithic kernel - consists of everything below the system-call interface

and above the physical hardware. Provides the file system, CPU

scheduling, memory management, and other operating-system functions;

a large number of functions for one level

▪ System programs (frequently connected via pipes)

L.J. Opalski, slides for „Operating Systems I” course

Adaptation of Silberschatz, Galvin, Gagne slides for the textbook

„Applied Operating Systems Concepts”
22

Microkernel System Structure

▪ Moves as much from the kernel into user space

▪ Communication takes place between user modules using message passing

▪ Features:

+ Easier to extend a microkernel (to add new functionality)

+ Easier to port the operating system to new architectures

+ More reliable (less code is running in kernel mode) and secure

- performance overhead of user space to kernel space communication

Application

Program

File

System

Device

Driver

Interprocess

Communication

memory

managment

CPU

scheduling

messagesmessages

microkernel

hardware

user

mode

kernel

mode

L.J. Opalski, slides for „Operating Systems I” course

Adaptation of Silberschatz, Galvin, Gagne slides for the textbook

„Applied Operating Systems Concepts”
23

Kernel modules

Many modern operating systems implement loadable kernel

modules

▪ Uses object-oriented approach

▪ Each core component is separate

▪ Each talks to the others over known interfaces

▪ Each is loadable as needed within the kernel

System Solaris

L.J. Opalski, slides for „Operating Systems I” course

Adaptation of Silberschatz, Galvin, Gagne slides for the textbook

„Applied Operating Systems Concepts”
24

Hybrid systems

Most modern operating systems are actually not one pure

model

▪ Hybrid combines multiple approaches to address

performance, security, usability needs

▪ Linux and Solaris kernels in kernel address space, so

monolithic, plus modular for dynamic loading of

functionality

▪ Windows mostly monolithic, plus microkernel for

different subsystem personalities

▪ Apple Mac OS X hybrid, layered, Aqua UI plus Cocoa

programming environment. Below there is kernel

consisting of Mach microkernel and BSD Unix parts,

plus I/O kit and dynamically loadable modules (called

kernel extensions)

L.J. Opalski, slides for „Operating Systems I” course

Adaptation of Silberschatz, Galvin, Gagne slides for the textbook

„Applied Operating Systems Concepts”
25

Microsoft Windows 7,… architecture

L.J. Opalski, slides for „Operating Systems I” course

From Silberschatz, Galvin, Gagne, Operating System Concepts, 9th ed.,, 2013

Adaptation of Silberschatz, Galvin, Gagne slides for the textbook

„Applied Operating Systems Concepts”
26

Mac OS X Structure

Hybrid XNU kernel:

▪ microkernel Mach 3: CPU scheduling (also RT), threads, virtual memory

▪ BSD UNIX kernel (POSIX API): models of processes and threads, protection

mechanisms, file systems (including HFS/HFS+), IPC, network protocols, sockets,

NFS,…

graphical user interface
Aqua

application environments and services

kernel environment

Java Cocoa Quicktime BSD

Mach

I/O kit kernel extensions

BSD

L.J. Opalski, slides for „Operating Systems I” course

Adaptation of Silberschatz, Galvin, Gagne slides for the textbook

„Applied Operating Systems Concepts”
27

Android OS

▪ Developed by Open Handset Alliance (mostly Google). Open Source

▪ Based on Linux kernel but modified. Provides process, memory, device-driver

management. Adds power management

▪ Runtime environment includes core set of libraries and Dalvik virtual machine.

Apps developed in Java plus Android API. Java class files compiled to Java

bytecode then translated to executable which runs in Dalvik VM

▪ Libraries include frameworks for web browser (webkit), database (SQLite),

multimedia, smaller libc
Applications

Application Framework

Android runtime

Core Libraries

Dalvik

virtual machine

Libraries

Linux kernel

SQLite openGL

surface

manager

webkit libc

media

framework

L.J. Opalski, slides for „Operating Systems I” course

Adaptation of Silberschatz, Galvin, Gagne slides for the textbook

„Applied Operating Systems Concepts”
28

Introduction

1. Operating system and computer system

2. Operating systems: goals and interface

3. Operating system structures

4. Computer system operations

L.J. Opalski, slides for „Operating Systems I” course

Adaptation of Silberschatz, Galvin, Gagne slides for the textbook

„Applied Operating Systems Concepts”
29

Computer system organization

L.J. Opalski, slides for „Operating Systems I” course

▪Computer-system operation

▪ One or more CPUs, device controllers connect through

common bus providing access to shared memory

▪ Concurrent execution of CPUs and devices competing for

memory cycles

Adaptation of Silberschatz, Galvin, Gagne slides for the textbook

„Applied Operating Systems Concepts”
30

Example: „classic PC” architecture

L.J. Opalski, slides for „Operating Systems I” course

Adaptation of Silberschatz, Galvin, Gagne slides for the textbook

„Applied Operating Systems Concepts”
31

Computer-System Operation

▪ I/O devices and the CPU can execute concurrently

▪Each device controller is in charge of a particular

device type

▪Each device controller has a local buffer

▪CPU moves data from/to main memory to/from local

buffers

▪ I/O is from the device to local buffer of controller

▪Device controller informs CPU that it has finished its

operation by causing an interrupt

L.J. Opalski, slides for „Operating Systems I” course

Adaptation of Silberschatz, Galvin, Gagne slides for the textbook

„Applied Operating Systems Concepts”
32

Interrupts

▪ Interrupt transfers control to the interrupt service

routine generally, through the interrupt vector, which

contains the addresses of all the service routines

▪ Interrupt architecture must save the address of the

interrupted instruction

▪ Incoming interrupts are disabled while another interrupt

is being processed to prevent a lost interrupt

▪A trap is a software-generated interrupt caused either

by an error or a user request

▪An operating system is interrupt driven

L.J. Opalski, slides for „Operating Systems I” course

Adaptation of Silberschatz, Galvin, Gagne slides for the textbook

„Applied Operating Systems Concepts”
33

Interrupt Handling

▪ The operating system preserves the state of the CPU by storing

registers and the program counter

▪ Determines which type of interrupt has occurred:

▪ polling

▪ vectored interrupt system

▪ Separate segments of code determine what action should be

taken for each type of interrupt

.

L.J. Opalski, slides for „Operating Systems I” course

Przebieg zdarzeń przy obsłudze przerwań

Adaptation of Silberschatz, Galvin, Gagne slides for the textbook

„Applied Operating Systems Concepts”
34

I/O operations

Scenarios of I/O operations

▪ Synchronous I/O operation. After I/O starts, control returns to user program only
upon I/O completion

▪ Wait instruction idles the CPU until the next interrupt or wait loop (contention for
memory access)

▪ At most one I/O request is outstanding at a time, no simultaneous I/O
processing

Note: synchronous operation can be also performer in non-blocking mode.

Control returns to the caller immediately, but if the operation could not be

performer – the caller is notified with an appropriate error code (so the attempt

can be retried).

▪ Asynchronous I/O operation. After I/O starts, control returns to user program
without waiting for I/O completion

▪ System call – request to the operating system to allow user to wait for I/O
completion

▪ Device-status table contains entry for each I/O device indicating its type,
address, and state

▪ Operating system indexes into I/O device table to determine device status and
to modify table entry to include interrupt

L.J. Opalski, slides for „Operating Systems I” course

Adaptation of Silberschatz, Galvin, Gagne slides for the textbook

„Applied Operating Systems Concepts”
35

Two scenarios of I/O operations

L.J. Opalski, slides for „Operating Systems I” course

synchroneous (and blocking) asynchroneous

Adaptation of Silberschatz, Galvin, Gagne slides for the textbook

„Applied Operating Systems Concepts”
36

Direct Memory Access - DMA

▪ Used for high-speed I/O devices able to transmit information at close to

memory speeds

▪ Device controller transfers blocks of data from buffer storage directly to

main memory without CPU intervention. Only one interrupt is generated

per block, rather than the one interrupt per byte

▪ DMA and CPU compete for memory – so the net speedup may vary.

L.J. Opalski, slides for „Operating Systems I” course

Adaptation of Silberschatz, Galvin, Gagne slides for the textbook

„Applied Operating Systems Concepts”
37

Storage Structure

▪ Main memory – only large storage media that the CPU can access directly

▪ Secondary storage – extension of main memory that provides large

nonvolatile storage capacity

L.J. Opalski, slides for „Operating Systems I” course

 Memory hierarchy

Adaptation of Silberschatz, Galvin, Gagne slides for the textbook

„Applied Operating Systems Concepts”
38

Memory hierarchy - cont.

L.J. Opalski, slides for „Operating Systems I” course

Path of data item A from magnetic disc to a CPU register

Caching – copying information into faster storage system temporarily; main

memory can be viewed as a last cache for secondary storage

▪Important principle, performed at many levels in a computer (in hardware,

operating system, software)

▪Faster storage (cache) checked first to determine if information is there

▪If it is, information used directly from the cache (fast)

▪If not, data copied to cache and used there

▪Cache smaller than storage being cached

▪Cache management important design problem

▪ Design issues: cache size and replacement policy; cache coherency

Adaptation of Silberschatz, Galvin, Gagne slides for the textbook

„Applied Operating Systems Concepts”
39

Hardware protection

▪Dual mode CPU operations (user and kernel modes).

▪ I/O protection

▪Memory protection

▪CPU protection

L.J. Opalski, slides for „Operating Systems I” course

Adaptation of Silberschatz, Galvin, Gagne slides for the textbook

„Applied Operating Systems Concepts”
40

Dual-mode CPU operations

▪ Dual-mode operation allows OS to protect itself and other system
components

▪ User mode and kernel mode

▪ Mode bit provided by hardware

• Provides ability to distinguish when system is running user
code or kernel code

• Some instructions designated as privileged, only executable
in kernel mode

• System call changes mode to kernel, return from call resets it
to user

L.J. Opalski, slides for „Operating Systems I” course

▪ Privileged CPU instructions can be executed only in privileged

CPU mode of operation

monitor user

Interrupt/fault

set user mode

Adaptation of Silberschatz, Galvin, Gagne slides for the textbook

„Applied Operating Systems Concepts”
41

System functions

• - System call is typically made by execution of a special CPU instruction (system trap),
which is handled similarly to interrupts (except interrupts are asynchronous events).

• - CPU changes its mode to privileged and then uses interrupt vector to find address of
the system trap handler (ISR).

• - ISR takes arguments of the system function call (CPU registers | system stack | memory
block addressed with registers).

▪ - If parameters are correct and acceptable some kernel code is invoked that implements
system function functionality. Otherwise the ISR sets error code and returns.

▪ - The ISR returns exit code, CPU changes its mode and return is made.

L.J. Opalski, slides for „Operating Systems I” course

Note: in real systems implementations of system calls can be more complex, e.g. to increase degree of

concurrency (typically CPU scheduler is invoked before function return – so a context switch can

occur before return to the caller process.

Adaptation of Silberschatz, Galvin, Gagne slides for the textbook

„Applied Operating Systems Concepts”
42

I/O protection

▪ All I/O instructions are privileged

▪ For full protection of I/O devices it is necessary

to protect interrupt vector – because device

drivers use interrupts

▪ Userspace code can access I/O only through
calls to system functions (which change
processor mode appropriately).

L.J. Opalski, slides for „Operating Systems I” course

Adaptation of Silberschatz, Galvin, Gagne slides for the textbook

„Applied Operating Systems Concepts”
43

Hardware memory protection

▪ Hardware protection of interrupt

vector and handler is necessary

for system sanity.

▪ Other areas of memory can be

protected (from unauthorized

use) with at least two registers,

which determine range of valid

addresses for a job (and kernel).

▪ Base register – holds the

low-end address.

▪ Limit register – keeps the

high-end address of a

memory region

▪ Hardware is to make impossible

access of memory outside the

range specified with the two

registers.

L.J. Opalski, slides for „Operating Systems I” course

Adaptation of Silberschatz, Galvin, Gagne slides for the textbook

„Applied Operating Systems Concepts”
44

Hardware memory protection

▪ While in kernel mode the CPU can access any memory location.

▪ CPU instructions that modify base and limit register are privileged.

▪ Hardware generates a trap when invalid memory reference is detected.

In turn a system Interrupt System Routine (ISR) is called after switching

CPU to the kernel mode of operation.

L.J. Opalski, slides for „Operating Systems I” course

Adaptation of Silberschatz, Galvin, Gagne slides for the textbook

„Applied Operating Systems Concepts”
45

CPU protection

▪ Timer is to prevent infinite loop / process hogging resources

▪ Set interrupt after specific period

▪ Operating system decrements counter

▪ When counter zero -> generate an interrupt

▪ Set up before scheduling process to regain control or terminate

program that exceeds allotted time

▪ Timer can be used to determine current time in the system.

▪ Timer setting instructions are privileged.

L.J. Opalski, slides for „Operating Systems I” course

