Introduction

1. Operating system and computer system
2. Operating systems: goals and interface
3. Operating system structures

4. Computer system operations

Last modification date: 20.09.2018

L.J. Opalski, slides for ,Operating Systems I’ course 1 Adaptation of Silberschatz, Galvin, Gagne slides for the textbook
»Applied Operating Systems Concepts”

What is an operating system?

® No universally accepted definition. “Everything a vendor ships when you order an
operating system” is a good approximation (but it varies wildly)

® A program that acts as an intermediary between a user of a computer and the
computer hardware

® Resource allocator — manages computer system resources, decides between
conflicting requests for efficient and fair resource use

® Control program - controls execution of programs to prevent errors and
improper use of the computer

® Kernel — the one program running at all times on the computer

® Basic computer system software which:
= executes user programs and makes solving user problems easier
= makes the computer system convenient to use
= uses the computer hardware in an efficient manner

" Computer system software which:
= enables management of hardware and software resources of the system

= Creates a process execution environment which is appropriate for the assumed mode
of system operation

L.J. Opalski, slides for ,Operating Systems |I” course Adaptation of Silberschatz, Galvin, Gagne slides for the textbook

»Applied Operating Systems Concepts”

Computer System Structure

1. Hardware — provides basic
computing resources (CPU,

memory, 1/0 devices) . _ _ N
2. Operating system - controls and . 3)
coordinates use of hardware among
various applications and users
3. Application programs — define the || “™ e e ren
ways in which the system resources Syslorn S0t Appicetion DFogRS
are used to solve the computing
problems of the users | operating system
4. Users - people, machines, other
Compute s | computer hardware

Adaptation of Silberschatz, Galvin, Gagne slides for the textbook
~Applied Operating Systems Concepts”

L.J. Opalski, slides for ,Operating Systems I’ course

Modes of operations

" Dominant mode of operation of computer system influences
significantly operating system architecture.

" Main modes of operation:
= off-line, batch
= on-line, interactive
= real-time

" Real systems typically support more than one mode of operation
(although to a different degree).

L.J. Opalski, slides for ,Operating Systems I’ course Adaptation of Silberschatz, Galvin, Gagne slides for the textbook

»Applied Operating Systems Concepts”

Multiprogramming

" Single user cannot keep CPU and I/O devices busy at
all times

® Multiprogramming organizes jobs (code and data) so
(each) CPU/core always has one to execute

" A subset of total jobs in system is kept in memory
® One job selected and run via job scheduling

" When it has to wait (for I/O for example), OS switches
to another job

" Multiprogramming requires:
= Memory management — jobs have to have

allocated/deallocated separate physical memory
chunks, protected from unauthorized access

= CPU scheduling — assignment of processor(s) to
ready jobs is controlled with control commands
(shell)

= Shared devices are made available via a set of
system provided I/O procedures (functions)

512K

L.J. Opalski, slides for ,Operating Systems I” course

operating system

job 1

job 2

job 3

job 4

Adaptation of Silberschatz, Galvin, Gagne slides for the textbook
~Applied Operating Systems Concepts”

Time sharing and interactive systems

" Timesharing (multitasking) is logical extension in which CPU switches
jobs so frequently that users can interact with each job while it is running,
creating interactive computing

= Response time should be < 1 second

= Each user has at least one program executing in memory
= process

= |f several jobs ready to run at the same time = CPU scheduling

= |f processes don't fit in memory, swapping moves them in and out
to run

= Virtual memory allows execution of processes which are not
loaded completely into memory

" Interactive operation uses direct communication between user terminal
and a task which is driven by user commands. Because of slow
computer-human interaction timesharing is needed to provide overall
system efficiency.

L.J. Opalski, slides for ,Operating Systems I’ course 6 Adaptation of Silberschatz, Galvin, Gagne slides for the textbook
»Applied Operating Systems Concepts”

Real-time systems

® Real-time (RT) systems are used when rigid time requirements have been
placed on the operation of a processor or the flow of data.

® Hard RT systems.
= Time requirements have to be respected absolutely (they are

guaranteed). This is needed in time-critical industrial control, robotics, etc.

Strict time requirements of RT are in conflict with requirements of
standard time-sharing =» hard real time operation cannot be strictly
iImplemented within a universal (multi-mode) system

Rigid requirements prevent use of some cost-effective solutions like
virtual memory, dynamic loading and other techniques which introduce
unpredictable response time.

® Soft RT systems:

L.J. Opalski, slides for ,Operating Systems I” course

Scheduling attempts to meet deadlines, but can occasionally violate them
in the interest of cost-effectiveness of the whole system.

Soft RT can be useful in multimedia, virtual reality and other application
when time response performance is important but not safety-critical.

Adaptation of Silberschatz, Galvin, Gagne slides for the textbook
~Applied Operating Systems Concepts”

Introduction

1. Operating system and computer system
2. Operating systems: goals and interface
3. Operating system structures

4. Computer system operations

Adaptation of Silberschatz, Galvin, Gagne slides for the textbook
~Applied Operating Systems Concepts”

L.J. Opalski, slides for ,Operating Systems I” course

Operating system goals

" Execution of user and system programs and protection of user
data

= Users want convenience, ease of use and good performance (but
might not care about resource utilization)

= Shared computer (mainframe or minicomputer) must keep all
users happy ©

= Handheld computers are resource poor =» optimized for usability
and battery life
" Efficient computer system resource management
= resource allocation/reclaiming
planning resource use
protection and security
resource use accounting
error handling

Adaptation of Silberschatz, Galvin, Gagne slides for the textbook
~Applied Operating Systems Concepts”

L.J. Opalski, slides for ,Operating Systems I” course

Computer system resources

® Resources managed by operating system
= Processor(s), cores
= Memory and other devices of the computer system
= [nformation kept in the system

® Composition of system resources depends on the computing
environments the system belongs to

= Generic single user system

= Portal

= Network computer (thin client))

= Distributed computations (and network operating systems)

= Client-server computing (asymmetric relationship)

= Peer-to-peer (P2P) computing (symmetric relationship of peers)

= Computer system hosting virtual machines

= Cloud computing (computing, storage, apps as a service on a net)
= Real-time embedded systems

L.J. Opalski, slides for ,Operating Systems I’ course Adaptation of Silberschatz, Galvin, Gagne slides for the textbook

10 »Applied Operating Systems Concepts”

Operating system services

user and other system programs

GUI batch command line
user interfaces
system calls
program /o file communication HeSOUICE accountin
execution operations systems allocation g
error pro;itglon
detection _ security
services

operating system

hardware

L.J. Opalski, slides for ,Operating Systems I’ course Adaptation of Silberschatz, Galvin, Gagne slides for the textbook

11 »Applied Operating Systems Concepts”

Concurrent resource use

" Multiprogramming and time-sharing demand safe and efficient sharing of
computer system resources among users and their jobs.

® Concurrent resource use is implemented with
= interrupts
= system means of communication and synchronization
= Multi-processor/multi-core architectures

" Degree of concurrency depends not only on hardware but also on OS properties:

= Symmetric Multiprocessing (SMP) — CPUs share all system and user job
related activities
= Asymmetric Multiprocessing — one master and many slave (worker) CPUs

® Access to shared resources is possible for user jobs only indirectly - by making
requests to the operating system via system calls.

® System functions form an interface between operating system and a running
program.

L.J. Opalski, slides for ,Operating Systems I’ course Adaptation of Silberschatz, Galvin, Gagne slides for the textbook

12 »Applied Operating Systems Concepts”

API function vs system function

® System functions can be directly called from assembly language code.

" High-level languages enable access to shared resources with
= calls of language specific functions which make appropriate system

function call(s)
= System function wrappers, which are usually called Application Program
Interface (API) Popular APIs: Win32, POSIX API, JAVA API

user application
open ()
user

mode
— system call interface
kernel
mode A
. open ()
s Implementation
i » of open ()
system call

return

L.J. Opalski, slides for ,Operating Systems I’ course 13 Adaptation of Silberschatz, Galvin, Gagne slides for the textbook
»Applied Operating Systems Concepts”

System function call from C

A C language program call standard
output formatting function printf() =>»

The function stores formatted output to
a local buffer associated with the
standard output stream (stdout).

When the buffer is about to be full (or
on demand: fflush()) a call to a
system function is made (write() for
POSIX API) to move buffer content to
the destination device.

L.J. Opalski, slides for ,Operating Systems I” course 14

user
mode

#include <stdio.h>
int main ()

{

printf ("Greetings");

retum o;

}

kernel

standard C library

mode
erite ()

Adaptation of Silberschatz, Galvin, Gagne slides for the textbook

write ()
system call

»Applied Operating Systems Concepts”

)

Sample WIin32 i POSIX API functions

Process
Control

File
Manipulation

Device
Manipulation

Information
Maintenance

Communication

Protection

L.J. Opalski, slides for ,Operating Systems I” course

Windows

CreateProcess()
ExitProcess{()
WaitForSingleObject()

CreateFile()
ReadFile()
WriteFile()
CloseHandle()

SetConsoleMode ()
ReadConsole()
WriteConsole()

GetCurrentProcessID()
SetTimer()
Sleep()

CreatePipe()
CreateFileMapping()
MapViewOfFile()

SetFileSecurity()

InitlializeSecurityDescriptor()

SetSecurityDescriptorGroup()

15

Unix

fork()
exit()
wait()

open()
read()
write()
close()

ioctl()
read()

write()

getpid()
alarm()
sleep()

pipe()
shmget ()
mmap ()

chmod ()
umask()
chown()

Adaptation of Silberschatz, Galvin, Gagne slides for the textbook

»Applied Operating Systems Concepts”

Selected operating system API standards

® UNIX type systems:
= SVID (System V Interface Definition)
= 4.x BSD (Berkeley Software Distribution)
- POSIX (Portable Operating System Interface) — IEEE, ISO, The Open
Group. Status as of 2018: POSIX.1-2017 (IEEE Std 1003.1-2017)
— Base Definitions (XBD)
— Shell and Utilities (XCU)
— System Interfaces (XSH)
— Rationale (XRAT)

Separate: POSIX Conformance Test Suite

- Single Unix Specification (SUS) — family of standards for systems
qualified for the name ,Unix” (93, 95, 98, 03). Basic components of
POSIX plus POSIX Certification Test Suite and the terminal
interface standard: CURSES. In all: 1742 interfaces.

" winl6/win32/win64/winCE — Microsoft Windows APIs (WInAPIs) for its OSs

L.J. Opalski, slides for ,Operating Systems I’ course Adaptation of Silberschatz, Galvin, Gagne slides for the textbook

16 »Applied Operating Systems Concepts”

Linux kernel interfaces

Linux API:
« Kernel internal API
« Kernel-user space API:
« System Call
Interface +
 GNU C Library
(glibc) wrapper

Linux kernel System Call Interface (SCl)

Linux API vs POSIX API

|| JRERREREE
(s | e
B -

https://en.wikipedia.org/wiki/Linux_kernel_interfaces

Adaptation of Silberschatz, Galvin, Gagne slides for the textbook
LApplied Operating Systems Concepts”

L.J. Opalski, slides for ,Operating Systems I” course 17

Introduction

1. Operating system and computer system
2. Operating systems: goals and interface
3. Operating system structures

4. Computer system operations

Adaptation of Silberschatz, Galvin, Gagne slides for the textbook
~Applied Operating Systems Concepts”

L.J. Opalski, slides for ,Operating Systems I” course 18

Operating systems structure

" Operating system code is huge, and so structuring Is
Important.

¥ Structuring of systems evolved in time.
= Simple system (hardly structured)
= Monolithic kernel + plethora of system programs
= Layered design
= Microkernel + system code in userspace
Hybrid systems

L.J. Opalski, slides for ,Operating Systems I’ course Adaptation of Silberschatz, Galvin, Gagne slides for the textbook

19 »Applied Operating Systems Concepts”

Simple system: MS-DOS

" Single-tasking

" Shell invoked when system
booted

® Simple method to run program
(no process created)

® Single memory space

" Loads program into memaory,
overwriting all but the kernel

" Program exit -> shell reloaded

free memory

free memory

command
interpreter

process

kernel

command
interpreter

(a)

kernel

(b)

at system startup running a program

L.J. Opalski, slides for ,Operating Systems I’ course Adaptation of Silberschatz, Galvin, Gagne slides for the textbook

20 »Applied Operating Systems Concepts”

Old-style (monolithic) UNIX system

Two distinct parts of the system.

® Monolithic kernel - consists of

everything below the system-call interface

and above the physical hardware. Provides the file system, CPU
scheduling, memory management, and other operating-system functions;
a large number of functions for one level

® System programs (frequently connected via pipes)

(the users)

shells and commands
compilers and interpreters
system libraries

signals terminal
handling
character I/O system
terminal drivers

Kernel
A

system-call interface to the kernel

swapping block /O

disk and tape drivers

kernel interface to the hardware

CPU scheduling
page replacement
demand paging
virtual memory

file system

system

terminal controllers
terminals

device controllers

memory controllers
physical memory

disks and tapes

L.J. Opalski, slides for ,Operating Systems I” course 21

Adaptation of Silberschatz, Galvin, Gagne slides for the textbook
~Applied Operating Systems Concepts”

Microkernel System Structure

® Moves as much from the kernel into user space
® Communication takes place between user modules using message passing

" Features:
+ Easier to extend a microkernel (to add new functionality)
+ Easier to port the operating system to new architectures
+ More reliable (less code is running in kernel mode) and secure
- performance overhead of user space to kernel space communication

Application File Device user
Program System Driver mode
N A N S _
messages 5 H messages]
Interprocess Emony cPU kernel
Communication managment scheduling mode
4 microkernel 4 n
v \4
hardware

L.J. Opalski, slides for ,Operating Systems I’ course Adaptation of Silberschatz, Galvin, Gagne slides for the textbook

22 »Applied Operating Systems Concepts”

Kernel modules

Many modern operating systems implement loadable kernel
modules

= Uses object-oriented approach

= Each core component is separate

= Each talks to the others over known interfaces
= Each is loadable as needed within the kernel

scheduling

device and classes
bus drivers

core Solaris
miscellaneous
modules

kernel
STREAMS executable
modules formats

Adaptation of Silberschatz, Galvin, Gagne slides for the textbook
~Applied Operating Systems Concepts”

System Solaris

loadable
system calls

L.J. Opalski, slides for ,Operating Systems I” course 23

Hybrid systems

Most modern operating systems are actually not one pure
model

= Hybrid combines multiple approaches to address
performance, security, usability needs

= Linux and Solaris kernels in kernel address space, so
monolithic, plus modular for dynamic loading of
functionality

= Windows mostly monolithic, plus microkernel for
different subsystem personalities

= Apple Mac OS X hybrid, layered, Aqua Ul plus Cocoa
programming environment. Below there is kernel
consisting of Mach microkernel and BSD Unix parts,
plus I/O kit and dynamically loadable modules (called
kernel extensions)

L.J. Opalski, slides for ,Operating Systems I’ course Adaptation of Silberschatz, Galvin, Gagne slides for the textbook

24 »Applied Operating Systems Concepts”

Microsoft Windows 7,... architecture

logon 0Ss/2 Win16 Win32 MSDOS POSIX
process applications applications applications | | applications applications
- A A -~
Y A f A 4 Y
security 0S/2 Win18 MSDOS POSIX
subsystem subsystem VDM VDM subsystem

8

Y
authentication
package
A

Y

security account -
manager database Win32
subsystem
3
) user mode
—_————————
executive
I/0 manager]
. i i oca
oioct | S| process | Pigard | vius, | racedue |,
manager < manager call window
monitor manager | manager 2l manager
facility
drivers 5
network kernel graphic
drivers ; device
Y drivers
3 hardware abstraction layer ‘

A

hardware

From Silberschatz, Galvin, Gagne, Operating System Concepts, 9th ed.,, 2013
L.J. Opalski, slides for ,Operating Systems I’ course Adaptation of Silberschatz, Galvin, Gagne slides for the textbook

25 »Applied Operating Systems Concepts”

Mac OS X Structure

graphical user interface

Aqua

application environments and services

kernel environment

BSD

Mach

I/O kit kernel extensions

Hybrid XNU kernel:

" microkernel Mach 3: CPU scheduling (also RT), threads, virtual memory

" BSD UNIX kernel (POSIX API): models of processes and threads, protection

mechanisms, file systems (including HFS/HFS+), IPC, network protocols, sockets,
NFS,...

L.J. Opalski, slides for ,Operating Systems I” course 26 Adaptation of Silberschatz, Galvin, Gagne slides for the textbook

~Applied Operating Systems Concepts”

Android OS

® Developed by Open Handset Alliance (mostly Google). Open Source

® Based on Linux kernel but modified. Provides process, memory, device-driver

management. Adds power management

" Runtime environment includes core set of libraries and Dalvik virtual machine.
Apps developed in Java plus Android API. Java class files compiled to Java
bytecode then translated to executable which runs in Dalvik VM

" Libraries include frameworks for web browser (webkit), database (SQLite),

multimedia, smaller libc

Application Framework

Libraries
SQLite openGL
surface media
manager framework
webkit libc

Android runtime

Core Libraries

Dalvik
virtual machine

L.J. Opalski, slides for ,Operating Systems I” course 27

Adaptation of Silberschatz, Galvin, Gagne slides for the textbook

~Applied Operating Systems Concepts”

Introduction

1. Operating system and computer system
2. Operating systems: goals and interface
3. Operating system structures

4. Computer system operations

Adaptation of Silberschatz, Galvin, Gagne slides for the textbook
~Applied Operating Systems Concepts”

L.J. Opalski, slides for ,Operating Systems I” course o8

Computer system organization

mouse keyboard printer monitor

@dlsks@ é forine
N

USB controller

| —

/]

graphics
adapter

disk

CPU
controller

memory

" Computer-system operation

= One or more CPUs, device controllers connect through
common bus providing access to shared memory

= Concurrent execution of CPUs and devices competing for
memory cycles

L.J. Opalski, slides for ,Operating Systems I’ course Adaptation of Silberschatz, Galvin, Gagne slides for the textbook

29 »Applied Operating Systems Concepts”

Example: ,,classic PC” architecture

Cache bus Local bus Memory bus
Level 2 PCI l N[Main
cache CPU bridge < Ff memory
AN PCI bus
< sl
! L
\
Graphics
SCsl usB ISA — IDE adaptor Available
7 bridge disk i PCI slot
q_[I—L;) i’ I Mon-
itor
Key-
Mouse
boar ISA bus
¢ 4 [1[1[] N
I 1 oy
Sound . i
Modem Printer Available
card ISA slot
L.J. Opalski, slides for ,Operating Systems I’ course 30 Adaptation of Silberschatz, Galvin, Gagne slides for the textbook

»Applied Operating Systems Concepts”

Computer-System Operation

" /O devices and the CPU can execute concurrently

" Each device controller is in charge of a particular
device type

® Each device controller has a local buffer

" CPU moves data from/to main memory to/from local
buffers

®1/0O iIs from the device to local buffer of controller

" Device controller informs CPU that it has finished its
operation by causing an interrupt

L.J. Opalski, slides for ,Operating Systems I’ course Adaptation of Silberschatz, Galvin, Gagne slides for the textbook

31 »Applied Operating Systems Concepts”

Interrupts

" Interrupt transfers control to the interrupt service
routine generally, through the interrupt vector, which
contains the addresses of all the service routines

" Interrupt architecture must save the address of the
Interrupted instruction

" Incoming interrupts are disabled while another interrupt
IS being processed to prevent a lost interrupt

" A trap Is a software-generated interrupt caused either
by an error or a user request

" An operating system is interrupt driven

L.J. Opalski, slides for ,Operating Systems I’ course Adaptation of Silberschatz, Galvin, Gagne slides for the textbook

32 »Applied Operating Systems Concepts”

Interrupt Handling

" The operating system preserves the state of the CPU by storing
registers and the program counter

" Determines which type of interrupt has occurred:
= polling
= vectored interrupt system

" Separate segments of code determine what action should be
taken for each type of interrupt

CPU user

process
executing I_I | I

/O interrupt

processing
/O idle
device transferring |
/O transfer /O transfer
request done request done

Przebieg zdarzen przy obstudze przerwan
L.J. Opalski, slides for ,Operating Systems I’ course Adaptation of Silberschatz, Galvin, Gagne slides for the textbook

33 »Applied Operating Systems Concepts”

/O operations

Scenarios of I1/O operations

® Synchronous I/O operation. After I/O starts, control returns to user program only
upon I/O completion
= Wait instruction idles the CPU until the next interrupt or wait loop (contention for
memaory access)
= At most one I/O request is outstanding at a time, no simultaneous 1/0O
processing

Note: synchronous operation can be also performer in non-blocking mode.
Control returns to the caller immediately, but if the operation could not be
performer — the caller is notified with an appropriate error code (so the attempt
can be retried).

" Asynchronous /O operation. After I/O starts, control returns to user program
without waiting for I1/O completion

= System call — request to the operating system to allow user to wait for 1/0
completion

= Device-status table contains entry for each I/O device indicating its type,
address, and state

= Operating system indexes into 1/0O device table to determine device status and
to modify table entry to include interrupt

L.J. Opalski, slides for ,Operating Systems I’ course 34 Adaptation of Silberschatz, Galvin, Gagne slides for the textbook
»Applied Operating Systems Concepts”

wo scenarios of I/O operations

synchroneous (and blocking) asynchroneous
requesting process ,
r
use { waiting A A requesting process A } user
~ ~
device driver device driver
1 |
kernel < | interrupt handler 1 I interrupt handler - kernel
\ LS
‘ hardware l hardware
data transfer e = = data tranSsfer mm
- -
tiMe =— tiMe ——
(a) (b)

L.J. Opalski, slides for ,Operating Systems I” course Adaptation of Silberschatz, Galvin, Gagne slides for the textbook

35 ~Applied Operating Systems Concepts”

Direct Memory Access - DMA

® Used for high-speed I/O devices able to transmit information at close to
memory speeds

® Device controller transfers blocks of data from buffer storage directly to
main memory without CPU intervention. Only one interrupt is generated
per block, rather than the one interrupt per byte

®" DMA and CPU compete for memory — so the net speedup may vary.

; - Instruction execution —»
|8 cycle instructions
thread of execution | g and
«— data movement —»
data
__CPUCN)
9 o % DMA
pos 1 3
c o [=
(_3. l = memory
S device !
M)
A<| r
. !
L.J. Opalski, slides for ,Operating Systems I’ course 36 Adaptation of Silberschatz, Galvin, Gagne slides for the textbook

»Applied Operating Systems Concepts”

Storage Structure

" Main memory — only large storage media that the CPU can access directly

® Secondary storage — extension of main memory that provides large
nonvolatile storage capacity

1 2 3 4
registers cache main memory disk storage
Typical size <1KB >16 MB >16GB > 100 GB

Implementation custom memory with | on-chip or off-chip| CMOS DRAM magnetic disk
technology multiple ports, CMOS | CMOS SRAM

Access time (ns) 025-05 05-25 80 - 250 5,000.000
20,000 - 100,000 5000 - 10,000 1000 - 5000 20-150

compiler hardware operating system | operating system
cache main memory disk CD or tape

< Memory hierarchy

L.J. Opalski, slides for ,Operating Systems I’ course Adaptation of Silberschatz, Galvin, Gagne slides for the textbook

37 LApplied Operating Systems Concepts”

Memory hierarchy - cont.

Path of data item A from magnetic disc to a CPU register

magnetic ‘ main hardware

disk memory register

Caching — copying information into faster storage system temporarily; main
memory can be viewed as a last cache for secondary storage

®"Important principle, performed at many levels in a computer (in hardware,
operating system, software)
®Faster storage (cache) checked first to determine if information is there
=|f it is, Information used directly from the cache (fast)
=*|f not, data copied to cache and used there

®Cache smaller than storage being cached
=Cache management important design problem
= Design issues: cache size and replacement policy; cache coherency

L.J. Opalski, slides for ,Operating Systems I’ course 38 Adaptation of Silberschatz, Galvin, Gagne slides for the textbook
»Applied Operating Systems Concepts”

Hardware protection

" Dual mode CPU operations (user and kernel modes).
" /O protection
" Memory protection

" CPU protection

L.J. Opalski, slides for ,Operating Systems I’ course Adaptation of Silberschatz, Galvin, Gagne slides for the textbook

39 »Applied Operating Systems Concepts”

Dual-mode CPU operations

® Dual-mode operation allows OS to protect itself and other system
components

= User mode and kernel mode
= Mode bit provided by hardware

- Provides ability to distinguish when system is running user
code or kernel code
- Some instructions designated as privileged, only executable
in kernel mode
- System call changes mode to kernel, return from call resets it
to user
Interrupt/fault

set user mode

" Privileged CPU instructions can be executed only in privileged
CPU mode of operation

L.J. Opalski, slides for ,Operating Systems I’ course 40 Adaptation of Silberschatz, Galvin, Gagne slides for the textbook
»Applied Operating Systems Concepts”

System functions

- System call is typically made by execution of a special CPU instruction (system trap),
which is handled similarly to interrupts (except interrupts are asynchronous events).

- CPU changes its mode to privileged and then uses interrupt vector to find address of
the system trap handler (ISR).

- ISR takes arguments of the system function call (CPU registers | system stack | memory
block addressed with registers).

- If parameters are correct and acceptable some kernel code is invoked that implements
system function functionality. Otherwise the ISR sets error code and returns.

- The ISR returns exit code, CPU changes its mode and return is made.

user process
user m0(_:1e
user process executing » calls system call return from system call (mode bit = 1)
\ 7
3 7
3 7
kernel trap return
i mode bit=0 mode bit = 1
kernel mode
execute system call (mode bit = 0)

Note: in real systems implementations of system calls can be more complex, e.g. to increase degree of
concurrency (typically CPU scheduler is invoked before function return — so a context switch can
occur before return to the caller process.

Adaptation of Silberschatz, Galvin, Gagne slides for the textbook
~Applied Operating Systems Concepts”

L.J. Opalski, slides for ,Operating Systems I’ course a1

I/O protection

® All 1/O instructions are privileged

® For full protection of I/O devices it is necessary
to protect interrupt vector — because device ki PR
drivers use interrupts
® Userspace code can access I/O only through :
calls to system functions (which change ® : @
i trap to perform /O
processor mode appropriately). st o read |-
return
10 user
system call n = p,:;;f;m
L.J. Opalski, slides for ,Operating Systems I’ course 42 Adaptation of Silberschatz, Galvin, Gagne slides for the textbook

»Applied Operating Systems Concepts”

Hardware memory protection

" Hardware protection of interrupt
vector and handler is necessary
for system sanity. monitor

256000

" Other areas of memory can be
protected (from unauthorized job 1
use) with at least two registers,
which determine range of valid 300040 300040
addresses for a job (and kernel). base register

] job 2
= Base register — holds the
low-end address. 420940 120900

= Limit register — keeps the _— limit register
high-end address of a o
memory region

880000

" Hardware is to make impossible job 4
access of memory outside the
range specified with the two
registers.

1024000

Adaptation of Silberschatz, Galvin, Gagne slides for the textbook
~Applied Operating Systems Concepts”

L.J. Opalski, slides for ,Operating Systems I” course 43

Hardware memory protection

base base + limit

address
CPU

trap to operating system
monitor—addressing error memory

" While in kernel mode the CPU can access any memory location.
" CPU instructions that modify base and limit register are privileged.

® Hardware generates a trap when invalid memory reference is detected.

In turn a system Interrupt System Routine (ISR) is called after switching
CPU to the kernel mode of operation.

L.J. Opalski, slides for ,Operating Systems I’ course a4 Adaptation of Silberschatz, Galvin, Gagne slides for the textbook

»Applied Operating Systems Concepts”

CPU protection

" Timer is to prevent infinite loop / process hogging resources
= Set interrupt after specific period
= Qperating system decrements counter
= When counter zero -> generate an interrupt
= Set up before scheduling process to regain control or terminate
program that exceeds allotted time
" Timer can be used to determine current time in the system.

" Timer setting instructions are privileged.

L.J. Opalski, slides for ,Operating Systems I’ course 45 Adaptation of Silberschatz, Galvin, Gagne slides for the textbook

»Applied Operating Systems Concepts”

