
Lecture 1 - Introduction
Operating Systems 1

Warsaw University of Technology - Faculty of Mathematics and Information Science



What is an Operating
System?

an intermediary
between a user the

hardware

There's no clear definition of the Operating System

a resource
allocator

a program
controlling other

programs

the kernel
a basic software of

the computer system



Hardware

Operating System

Application Programs
aka. userspace programs

Users

Layers of the computer system

Users are running and using various programs running
on the system

Programs are using services and interfaces
exposed by the operating system

Operating system uses available hardware resources
directly to do what is asked by the programs



0x0000

Hardware resources managed by the OS

Memory

User's task

Kernel

Free

User's task

0x1000

0xFFFF

CPU 1 CPU 2

CPU 3 CPU 4

User's task

System
service Idle

User's task



NIC (Network Interface Card)
User Task 1 msg

msg

transmission
line

Hardware resources managed by the OS

User Task 2

SSD drive

User Task 1

User Task 2

write

read



Users, user groups, credentials, permissions
Files, file attributes
Clocks, timers
System configuration

create a new user

file.txt

User
database

set clock time

change file
attributes

Logical resources managed by the OS

...

User Task 1

CPU 1



Memory

User's task

CPU 1

A task might not need all the hardware

Executing just a single task at a time is fairly simple for the OS (and wasteful)

Kernel

CPU 2

User's task

Idle
Free

It may need to wait for I/O like:
- user input
- incoming network data
- data from a slow HDD



multiprogramming

where do I run?

There might be more tasks
than available CPUs!

the OS has to provide job scheduling

Allowing to run multiple tasks concurrently raises multiple issues

CPU 1 CPU 2

CPU 3 CPU 4

User's task User's task

User's task User's task

A new task



no space for me?

There might not be enough memory
for all tasks

the OS has to provide main memory management

Memory

User's task

Kernel

Free

User's task

Free

User's task

A (large) new task



me write()'s

Tasks might try to share resources,
in a conflicting way

Filesystem file.txt

me write()'s too

delete() :)

the OS has to protect all shared resources and provide
a set of safe system calls to access them

CPU 1 CPU 2

User's A
task

User's B
task

CPU 3

User's C
task



Modes of operation

off-line
aka. batch

soft RT

Users request multiple tasks - it's up to the OS how to execute them

on-line
aka.

interactive

real-time

hard RT



In batch mode jobs are queued and executed one-by-one

T6

wait queue

Users cannot execute programs directly
but can request the OS add them to the queue.
The queue can be prioritized.

Tasks typically get full access to all available
hardware resources to finish ASAP.

This mode is frequently found in large
High Performance Computing (HPC) clusters.

T5 T4 T3 T2
CPU 1

Batch Task
1

CPU 2

Batch Task
2

Memory

Batch Task 1

Kernel

Free



In an on-line system (also multitasking/timesharing) , the OS
switches between tasks running concurrently creating interactive computing

CPU 1 time

User Task A

~20ms timeslice
a context switch

Task A needs
to wait for I/O

Task B didn't finish
within it's timeslice

The OS must be able to take the CPU from a running task and assign it to some other task
preemption

User Task B UT A User Task B



In a real time system, there exists an upper bound on the system's reaction time
to an external event

time

the vault door
became open

the system I/O
card emits an
alarm signal

bound
reaction time

This mode is desired in mission-critical applications, i. e. in the transportation industry.

Implementing such requires many restrictions. The OS must be aware of the precise
characteristics of the running tasks - what resources would they ever need. This is
unpredictable for a general purpose operating system.



In a time sharing system tasks do share a single CPU core.
This is a resource which requires protection!

CPU1

User Task A

.L2:
add DWORD PTR [rbp-4], 1
mov edx, DWORD PTR [rbp-4]
mov eax, edx
add eax, eax
add eax, edx
mov DWORD PTR [rbp-4], eax
jmp .L2

User task B User Task C

an infinite loop!



How to do that considering how simple CPU is?

1. fetch

The CPU instruction cycle 1. read next instruction from memory

2. figure out what those bytes mean

3. do what the instruction said to do

I got 5 bytes: b8 04 00 00 00

Okay, 0xb8 means move next byte (0x04)
to the register EAX

This is all hardcoded in hardware!
It's what both OS code and user code only can do!

(IP += sizeof(instruction))

2. decode3. execute
Configure the internal CPU buses,
registers, switches, execute many small
substeps ending with EAX = 4

(4.) increment the Instruction Pointer (IP register)



We need a way to execute something else from time to time.

CPUs have such a mechanism - the interrupts!

normal mode

(1) interrupt

(2) let's do
something else

interrupt
mode

(3) back to normal

1. fetch

2. decode3. execute



CPU1IC

timer

i/o device

INT0

INT1

INT2

INT3

Each CPU has an Interrupt Controller attached which triggers the mode switch

The IC can enable, disable, queue and prioritize multiple interrupts occurring
at the same time and deliver them to the CPU one-by-one.

OS code configures the timer to fire an interrupt in a few milliseconds
with a special instruction before jumping to the user code.

hardware interrupt lines



CPU1
0xC002 mov
0xC004 add
0xC006 jmp
0xC008 ...

0xE072 0x000A
0xE074 0x0001
0xE076 0xC004
0xE078 <uninit>

Upon receiving an interrupt the CPU automatically:
1. saves the Instruction Pointer on the stack
2. sets the IP to the address of the first instruction
of the interrupt handler code

IP = 0xC004 current
instruction

1. push the IP
(0xC004)

0. interrupt

.stack

.code

IP value

2. set the IP
(0x0A08)

0x0A08 mov
0x0A0A lea
0x0A0C mov
0x0A0E ...

local var

func param

.int_handler



How does the CPU know the address of the interrupt handler?

At a fixed address specified by the CPU the system (OS)
keeps a table of interrupt handler addresses
- the interrupt vector!

AVR® Interrupts - simple example of a microcontroller interrupt vector memory layout
https://developerhelp.microchip.com/xwiki/bin/view/products/mcu-mpu/8-bit-avr/structure/interrupts/

0x0000 0x0A08
0x0002 0x0A22
0x0004 0x0A30
...

0x0A08 mov
0x0A0A lea
0x0A0E ...

.int0_handler

0x0A22 mov
0x0A24 mov
...

.int1_handler

.int_vec

INT0

INT1

INT2

No Addr Source Interrupt Definition
1 0x0000 RESET External pin, Power-on Reset
2 0x0002 INT0 External Interrupt Request 0
3 0x0004 INT1 External Interrupt Request 1
4 0x0006 INT2 External Interrupt Request 2
5 0x0008 INT3 External Interrupt Request 3
6 0x000A INT4 External Interrupt Request 4
7 0x000C INT5 External Interrupt Request 5
8 0x000E INT6 External Interrupt Request 6
8 0x0010 INT7 External Interrupt Request 7
9 0x0012 PCINT0 Pin Change Interrupt Request 0
10 0x0014 PCINT1 Pin Change Interrupt Request 1
11 0x0016 PCINT2 Pin Change Interrupt Request 2
12 0x0018 WDT Watchdog Time-out Interrupt
13 0x001A TIMER2_COMPA Timer/Counter2 Compare Match A
14 0x001C TIMER2_COMPB Timer/Counter2 Compare Match B
...



0xD002 mov
0xD004 mov
0xD008 ...

0x0A08
0x0A0A
0x0A0C
0x0A0E
0x0A10
0x0A12

Interrupt handler code does not need to
resume the interrupted program.
This is where OS can decide to resume
some other task - do a context switch! pesudocode:

task = pick_next_task()
IP = task.saved_IP()

timer

1. prog1 timeslice
expires!

2. CPU jumps to
timer interrupt

handler
3. handler sets
IP = 0xD004
resuming prog2

0xC002 mov
0xC004 add
0xC008 ...
.prog2_code

.prog1_code

.timer_int_handler

CPU1

IP = 0xC004 current
instruction



In a time-sharing system a userspace program cannot access any shared system resource directly.
It must do so via a system call!

user mode

kernel mode
syscall interface

User Task

read() return value

OS provided
read()

implementation

Only code running here
is allowed to directly
access the resources
(i.e. peripheral devices)



How to disallow anything for the user code then?

???

set MB = 0

MB = 0

We need a Mode Bit!

A single bit stored within the CPU core, set
to 1 when running the OS code.

illegal
instruction

MB = 1 and
instruction
is privileged

all good!

kernel
mode

user
mode

MB = 1

When MB = 0 some instructions are
disallowed - in hardware.
A single bit stored within the CPU core, set
to 1 when running the OS code.

1. fetch

2. decode3. execute



How a program can enter the kernel mode then?

It triggers a software interrupt!

_start:
mov eax, 0x1
mov ebx, 0
int 0x80

First interrupt parameter
syscall number (0x1 = exit())

compile for x86_32

jump to interrupt
handler no. 128

and
set mode bit = 0

inspect eax to
determine syscall

type

done by CPU automatically

Second, syscall dependent interrupt parameter
(program exit code = 0)

Special instruction which triggers the interrupt
on intel x86_32 0x80 means - do a sycall!

int main() {
exit(0);
}

validate params
and execute OS-
provided exit()
implementation

the actual Operating System code running with MB = 0



The Linux syscall table
https://filippo.io/linux-syscall-table/

%rax Name Manual Entry point
0 read read(2) sys_read
1 write write(2) sys_write
2 open open(2) sys_open
3 close close(2) sys_close
4 stat stat(2) sys_newstat
5 fstat fstat(2) sys_newfstat
6 lstat lstat(2) sys_newlstat
7 poll poll(2) sys_poll
8 lseek lseek(2) sys_lseek
9 mmap mmap(2) sys_ksys_mmap_pgoff
...

There 456 distinct syscalls in Linux 6.7 kernel! - and we're gonna learn just a few

> man 2 syscalls


