Lecture 1 - Introduction

Operating Systems 1

Warsaw University of Technology - Faculty of Mathematics and Information Science

There's no clear definition of the Operating System

a resource
allocator

an intermediary
between a user the
hardware

a program
controlling other
programs

What is an Operating
System?

a basic software of
the computer system

Layers of the computer system

[Users

v

on the system
Application Programs j

Users are running and using various programs running

aka. userspace programs

Programs are using services and interfaces
exposed by the operating system

v

[Operating System

Operating system uses available hardware resources
directly to do what is asked by the programs

|

Hardware

Hardware resources managed by the OS

0x0000 //' Memory ‘\\
/6EU 1 a\\ /6EU 2 ‘\\ Kernel

¥x1000 N J
User's task User's task 4 h
\\;)// \\‘ 4// User's task

/EPU 3 O\ /ePu 4 N\ User's task
C “\| N\ Y,
>ystem | Idle | — T N
service | ,
\))

/7
:
|
|
l
OXFFFF \N o _ _ _ _ _)

Hardware resources managed by the OS

(User Task 1 J

SSD drive

(User Task 2 J<§E——Pead

(\ ° °
User Task 1 msg——> ‘\W tranimi231on
1
h g NIC (Network Interface Card)
()
User Task 2 <——Mmsg

Logical resources managed by the OS

Users, user groups, credentials, permissions CPU 1
Files, file attributes [User Task 1 j
Clocks, timers /’ ‘
System configuration \
create a new user set clock time
L;(/ change file
attributes
User
database

\

(file.txt J

Executing just a single task at a time is fairly simple for the OS (and wasteful)

o - E Memory ?

A task might not need all the hardware User's task

It may need to wait for I/O like: \ / / \

- user input User's task

- incoming network data

- data from a slow HDD CPU 2 \ \ A /
. 2 \

multiprogramming

There might be more tasks
than available CPUs!

A new task

/PU 1

~

User's task

S

=/

where do I run?——>

/€PU 3

~

S

User's task

Allowing to run multiple tasks concurrently raises multiple issues

/EPU 2

~

User's task

\&

7

/EPU 4

~

)

the OS has to provide job scheduling

&

User's task

Z

There might not be enough memory

for all tasks

A (large) new task

no space for me?——>

//,ﬁ Memory *‘\\

a)
Kernel
N\ J
()
User's task
g J
{ ————————— ~N
| Free |
“)
(User's task J
{ ————————— ~N
| Free '
“)

the OS has to provide main memory management

Tasks might try to share resources,
in a conflicting way

CPU 1

User's A User's B
task task

me write()'s me write()'s too
N
Filesystem [file.txt jédelete() :)

the OS has to protect all shared resources and provide
a set of safe system calls to access them

Users request multiple tasks - it's up to the OS how to execute them

Modes of operation

off-1line
aka. batch

on-line
aka.
interactive

In batch mode jobs are queued and executed one-by-one

BB —

Users cannot execute programs directly
but can request the OS add them to the queue.
The queue can be prioritized.

Tasks typically get full access to all available
hardware resources to finish ASAP.

This mode is frequently found in large
High Performance Computing (HPC) clusters.

/EPU 1

J

Batch Task

1

N

=

/Py 2

AN

Batch Tas

k

///’* Memory *‘\\\

Kernel

~

(:Batch Task 1

~
)

o — — = — —

N

N\

—

—
.

In an on-line system (also multitasking/timesharing) , the OS
switches between tasks running concurrently creating interactive computing

a context switch
~20ms timeslice /
[User Task AJD[User Task B JDI utl A ID[User Task B J

,T\ /]\ CPU 1 time >

Task 4 needs Task B didn't Finish
to wait for I/O within it's timeslice

The OS must be able to take the CPU from a running task and assign it to some other task
preemption

In a real time system, there exists an upper bound on the system's reaction time
to an external event

reaction time >n

bound >

time

the vault door

the system I/0
became open

card emits an

alarm s?gno\l

This mode is desired in mission-critical applications, i. e. in the transportation industry.

Implementing such requires many restrictions. The OS must be aware of the precise
characteristics of the running tasks - what resources would they ever need. This is
unpredictable for a general purpose operating system.

In a time sharing system tasks do share a single CPU core.
This is a resource which requires protection!

4)

User task B

_ Wy,

add
mov
mov
add
add

mov
\ep

fﬁser Task A

.L2:

CPU1

an infFinite loop!

DW PTR [rbp-4], 1
edx, [DWORD PTR [rbp-4]
eax,/ edx

eax, eax

eax/ edx

DWQRD PTR [rbp-4], eax
.L

I

= a)

User Task C

_ J

How to do that considering how simple CPU is?

The CPU instruction cVCle 1. read next instruction from memory

I got 5 bytes: b8 04 00 00 00

(IP += sizeof(instruction)) 2. figure out what those bytes mean

Okay, @xb8 means move next byte (0x04)
to the register EAX

3. do what the instruction said to do

Configure the internal CPU buses,
registers, switches, execute many small
substeps ending with EAX = 4

(4.) increment the Instruction Pointer (IP register)

This is all hardcoded in hardware!
It's what both OS code and user code only can do!

We need a way to execute something else from time to time.

CPUs have such a mechanism - the interrupts!

—(1) interrupt—=

v
C

normal moo(e

2. decode
\

~

sow«e‘tl«ing else

$(

(2) let's do

interrupt
mode

3) back to normal

Each CPU has an Interrupt Controller attached which triggers the mode switch

Np—

INTO/ \
timer
INT1
2| I |[=— CPU1
INT3|
i/o device

> N y

hardware interrupt lines

OS code configures the timer to fire an interrupt in a few milliseconds
with a special instruction before jumping to the user code.

The IC can enable, disable, queue and prioritize multiple interrupts occurring
at the same time and deliver them to the CPU one-by-one.

Upon receiving an interrupt the CPU automatically:
.int_handler

1. saves the Instruction Pointer on the stack
2. sets the |IP to the address of the first instruction 0x0AB8 mov
of the interrupt handler code / 0x0A0A lea

2. set the 1p | 0%@ABC mov
(0x0A08) Ox0AQE ...
[e } / - code
— OxCOB2 mov
(2P - axco04] o eton—=>| 0xC004 add
——0. interrupt—=) OxCO06 jmp
\ OxCo08 . ..
1. push the IP

.stack
& J (0xC004)
OxEQ72 Ox000A func param
\ OxEQ74 0x0001 local var
OxXEB76 OxCOB4 IP value
OxEOQ/8 <uninit>

How does the CPU know the address of the interrupt handler?

At a fixed address specified by the CPU the system (OS)

keeps a table of interrupt handler addresses

- the interrupt vector!

No Addr Source Interrupt Definition

COC0ONONO WM P

9

0x0000
0x0002
0x0004
0x0006
0x0008
0x000A
0x000C
0x000E
0x0010
0x0012

RESET External pin, Power-on Reset
INTO External Interrupt Request 0
INT1 External Interrupt Request
INT2 External Interrupt Request
INT3 External Interrupt Request
INT4 External Interrupt Request
INT5 External Interrupt Request
INT6 External Interrupt Request
INT7 External Interrupt Request 7
PCINT@ Pin Change Interrupt Request @

[)N &7 s S GV RN) O I

10 0x0014 PCINT1 Pin Change Interrupt Request 1

11 0x0016 PCINT2 Pin Change Interrupt Request 2

12 0x0018 WDT Watchdog Time-out Interrupt

13 0x001A TIMER2_COMPA Timer/Counter2 Compare Match A
14 0x001C TIMER2_COMPB Timer/Counter2 Compare Match B

AVR® Interrupts - simple example of a microcontroller interrupt vector memory layout
https://developerhelp.microchip.com/xwiki/bin/view/products/mcu-mpu/8-bit-avr/structure/interrupts/

=

.int_vec

Px0000 OxPAB8 INTO —

Px0002 Ox0A22 INT1 —
Px0004 0x0A30 1vT2

.int@_handler //// ///

Ox0AB8 mov &
Ox0A0A lea
OXOAQE . . .

.intl_handlerl///

Ox0A22 mov ©
Ox0A24 mov

Interrupt handler code does not need to
resume the interrupted program. .timer_int_handler

This is where OS can decide to resume Ox0ADS
some other task - do a context switch! Ox0AQA Pesudocode:
task = pick_next_task()

Ox0A0C ~
2. CPU jumps to Ox DADE IP = task.saved_IP()

timer interrupt 3. handler sets
handler Ox0A10 IP = 0xD00Y
AxPA12 resuw«?ng Progz
.progl_code
1. proy'l timeslice / CPU1 g C9@@2
\ / X mov
e IP = OxCoo4 |L—current —~0xC004 add
. > instruction
timer OxCoB8 ...

\\‘¥ 4/) .prog2_code
@xD002 mov é/

OxDOB4 mov
OxD008 ...

In a time-sharing system a userspace program cannot access any shared system resource directly.

It must do so via a system call!
[User Task J

N

read() return value

N /

user W\oo(e_
————————— { st/$CO«“ interface } —-_—————— - ==

kerv\el moo(e \l/ /I\

OS orovided Only code rum\?ng here
is allowed to ohrectlt/

read()
access the resources
(i.e. peripheral devices)

implementa’cion

How to disallow anything for the user code then?

We need a Mode Bit!

MB = 1 and

instruction

A single bit stored within the CPU core, set
to 1 when running the OS code. ‘
When MB = 0 some instructions are / \

disallowed - in hardware. — is privileged
A single bit stored within the CPU core, set : % decede —%l%l
\ ega

to 1 when running the OS code. all good! : :
instruction

How a program can enter the kernel mode then?
It triggers a software interrupt!

int main() £

ex1t(0)
o £ 2632 First interrupt parameter
compre el X sysea“ number (Ox1 = exit())
_start:
mov eax, Ox1 Secono(, sysca“ o(e(oev\o(ent interrupt parameter
mov ebx, @ < (program exit code = 0)

int 0x80 <

—_— SPecial instruction which triggers the interrupt
on intel x86_32 OxB0 means - do a sc/ca“!

jump to interrupt) validate params
handler no. 128 LAEPEEE G0 e and execute 0S-

and determine syscall |——= Brovided exit ()
set mode bit = 0 e implementation

done l:t/ CPU au‘toma‘hca“y the actual O(oe_rating St/stem code running with MB =0

The Linux syscall table

https://filippo.io/linux-syscall-table/

%rax Name Manual Entry point
@ read read(2) sys_read

write write(2) sys_write
open open(2) sys_open

close close(2) sys_close
stat stat(2) sys_newstat
fstat fstat(2) sys_newfstat
lstat 1lstat(2) sys_newlstat
poll poll(2) sys_poll

lseek lseek(2) sys_lseek
mmap mmap(2) sys_ksys_mmap_pgoff

OO NONOCG PP WPN P

There 456 distinct syscalls in Linux 6.7 kernel! - and we're gonna learn just a few

