
IPC - cz. 1

Kolejki komunikatów 

i pamięć wspólna

Ostatnia modyfikacja: 03.03.2020



Slajdy do wykładu „Systemy operacyjne 2”

POSIX IPC 

▪ Trwałość obiektów POSIX IPC to tzw. trwałość jądra za wyjątkiem semafora w 

pamięci, który ma trwałość procesu (process persistence) – obiekt istnieje tak 

długo, aż ostatni proces z niego korzystający dokona zamknięcia obiektu. 

Kolejki 

komunikatów

Pamięć 

wspólna

Semafory

Plik nagłówkowy <mqueue.h> <sys/mman.h> <semaphore.h>

Tworzenie/ 

otwieranie/usuwanie

mq_open(), 

mq_close(),

mq_unlink()

shm_open(), 

shm_unlink()

sem_open()

sem_close(),

sem_unlink(),

sem_init(),

sem_destroy()

Operacje sterujące mq_getattr(), 

mq_setattr()

ftruncate(), 

fstat()

Operacje komunikacji mq_send()

mq_receive(), 

mq_notify()

mmap()

munmap()

sem_wait(), 

sem_trywait(), 

sem_post(), 

sem_getvalue()



Slajdy do wykładu „Systemy operacyjne 2”

POSIX – kolejki komunikatów

Schemat komunikacji procesów za pomocą kolejki komunikatów

Podstawowe cechy kolejek komunikatów:

▪ Istnieje możliwość wskazania tej samej kolejki przez niezwiązane procesy. 

Kolejka komunikatów może być widoczna w systemie plików (Linux), ale nie musi 

▪ Przekazywanie komunikatów (o długości 0 do mq_msgsize) jest niezawodne. 

Kolejka ma trwałość w ramach systemu, tzn. istnieje do restartu systemu lub do 

jawnego usunięcia.

▪ W procesie kolejka jest identyfikowana przez deskryptor kolejki, zmienną typu 

mqd_t.. Deskryptor kolejki może być implementowany jako deskryptor pliku.

▪ Kolejka ma skończoną pojemność (mq_maxmsg komunikatów)

▪ Dostęp do funkcji realizujących kolejkę wymaga użycia biblioteki rt.

N1 

N2 

Nk 

O1 

Om 

n 
mq_maxmsg 



Slajdy do wykładu „Systemy operacyjne 2”

POSIX – kolejki komunikatów

▪ Komunikaty mają długość maksymalną (mq_msgsize) określoną w czasie 
tworzenia kolejki. Operacje odczytu muszą być zawsze przygotowane na odbiór 
komunikatu o maksymalnej długości.

▪ Kolejka ma określoną, w czasie tworzenia, długość (mq_maxmsg). Gdy 
zostanie ona przekroczona - proces piszący do kolejki będzie zablokowany 
(przy pracy w domyślnym trybie: blokującym) - aż będzie dostatecznie dużo 
miejsca wolnego w kolejce, bądź do przerwania sygnałem.

▪ Komunikaty odczytywane z kolejki zachowują strukturę, chociaż w kolejce 
mogą znajdować się komunikaty o różnej długości.

▪ Komunikatom można nadać priorytet (liczba całkowita bez znaku, mniejsza od 
stałej MQ_PRIO_MAX>=32, do pobrania przez sysconf()). Komunikaty o 
najwyższym priorytecie są umieszczane na początku kolejki (w porządku FIFO).

▪ Operacja odczytu z pustej kolejki blokuje odbiorcę (wątek), jeśli dostęp jest w 
trybie z blokowaniem.

▪ Implementacja definiuje MQ_OPEN_MAX (>=8) – maksymalną liczbę kolejek, 
które w danej chwili mogą być otwarte przez jeden proces.

▪ Istnieje interfejs plikowy do parametrów kolejki (man namespaces(7)): patrz 
/proc/sys/fs/mqueue.



Slajdy do wykładu „Systemy operacyjne 2”

Podstawowe typy i plik nagłówkowy

▪ Podstawowe typy danych i prototypy funkcji są w pliku nagłówkowym:

<mqueue.h>

▪ Atrybuty kolejki przekazywane są w strukturze:

struct mq_attr { 

long mq_flags;  /* 0 albo O_NONBLOCK */ 

long mq_maxmsg; /* Maks. liczba wiadomości w kolejce*/             

long mq_msgsize; /* Maks. długość wiadomości (B) */             

long mq_curmsgs; /* Aktualna liczba komunikatów 

w kolejce */

};



Slajdy do wykładu „Systemy operacyjne 2”

Tworzenie kolejki/otwieranie dostępu

mqd_t mq_open(const char *name, int oflag

/* , mode_t mode, struct mq_attr *attr */);

Funkcja mq_open zwraca identyfikator kolejki, albo (mqd_t)( –1) , ustawiając kod 

błędu w zmiennej globalnej errno.

Parametry wywołania:

name – łańcuch identyfikujący kolejkę komunikatów. 

oflag - tryb tworzenia kolejki, jak dla plików (O_RDONLY, O_WRONLY, O_RDWR, 

O_CREAT, O_EXCL, O_NONBLOCK)

mode - prawa dostępu do tworzonej kolejki (r i w - jak dla plików)

attr - wsk. do struktury atrybutów kolejki (pola: mq_maxmsg, mq_msgsize)

Uwagi: 

• wykonanie funkcji może zostać przerwane (kod wyjścia –1, errno==EINTR), wskutek 

obsługi sygnału przez proces wywołujący mq_open()

• W SO Linux kolejki tworzone są w wirtualnym systemie plików, który można domontować 

np. do katalogu /dev/mqueue. Informacje o kolejkach są dostępne w poddrzewie 

systemu plików: /proc/sys/fs/mqueue/



Slajdy do wykładu „Systemy operacyjne 2”

POSIX MQ – przestrzeń nazw i 

identyfikatorów

▪ Parametr name wskazuje na napis (C-string) będący nazwą kolejki komunikatów 

POSIX. 

▪ POSIX nie wymaga, by nazwa była widoczna w systemie plików czy była 

dostępna dla funkcji systemowych korzystających z nazw ścieżkowych. 

▪ Parametr name musi spełniać wymagania nazwy ścieżkowej (pathname). 

• Jeśli name rozpoczyna znak ‚/’, to każdy proces wywołujący mq_open( ) 

z taką nazwą wskazuje na tą samą kolejkę komunikatów – póki nie 

zostanie usunięta z systemu.

• Jeśli name nie rozpoczyna znak ‚/’ – konsekwencje zależą od 

implementacji. 

• Konsekwencje wielokrotnego wystąpienia w nazwie znaku ‚/’  zależą od 

implementacji. W SO Linux name rozpoczyna znak ‚/’; nie może być 

więcej takich znaków w name.

▪ Deskryptor kolejki komunikatów POSIX może być implementowany za pomocą 

deskryptora plików. Wówczas proces może jednocześnie mieć otwartych 

{OPEN_MAX} plików i kolejek.

▪ Dokumentacja kolejek w systemie Linux : mq_overview(7)



Slajdy do wykładu „Systemy operacyjne 2”

Zamykanie dostępu i kasowanie kolejki

▪ Gdy proces przestaje korzystać z kolejki powinien ją zamknąć za pomocą

int mq_close(mqd_t mq);

▪ Kolejkę kasuje się za pomocą:

int mq_unlink(char *name);

Funkcja powoduje natychmiastowe usunięcie nazwy wskazanej kolejki z 

systemu; sama kolejka jest usuwana z systemu wtedy, gdy wszystkie

procesy, które otwarły dostęp do tej kolejki  zamkną deskryptory kolejki (za 

pomocą mq_close) .



Slajdy do wykładu „Systemy operacyjne 2”

Wysyłanie komunikatów
int_t mq_send( mqd_t mqdes, const char *msg_ptr,  

size_t msg_len, unsigned msg_prio );

wstawianie komunikatu (msg_ptr[0],…msg_ptr[msg_len-1])  do kolejki mqdes

int mq_timedsend( mqd_t mqdes, const char *msg_ptr,        

size_t msg_len, unsigned msg_prio, 

const struct timespec *abs_timeout );

wstawianie komunikatu do kolejki (z ograniczonym czekaniem)

Parametry wywołania:
mqdes - identyfikator kolejki komunikatów
msg_ptr - adres bufora wysyłanego komunikatu
msg_len - długość wysyłanego komunikatu
msg_prio - priorytet komunikatu (od 0 do MQ_PRIORITY_MAX)
abs_timeout - odległość czasowa (od północy 1.I.1970r.) końca okresu czekania na 

dostęp do kolejki
struct timespec { 

time_t tv_sec;        /* sekundy */
long tv_nsec;       /* nanosekundy */

};

Funkcje wysyłające zwracają 0 przy pomyślnym wstawieniu komunikatu (mq_timedsend() - w 
zadanym przedziale czasu), albo –1 przy niepowodzeniu (errno zawiera kod błędu).

Jeśli kilka wątków blokuje na mq_send()/mq_timedsend() z powodu pełnej kolejki, to przy 
zwolnieniu miejsca odblokowywany jest wątek o najwyższym priorytecie, czekający najdłużej.

Uwaga: obydwie funkcje mogą zostać przerwane po obsłużeniu przez proces sygnału.



Slajdy do wykładu „Systemy operacyjne 2”

Odbiór komunikatów
int mq_receive(mqd_t mqdes, char *msg_ptr, size_t msg_len, 

unsigned *msg_prio_p);

Funkcja pobiera z kolejki związanej z deskryptorem mqdes do bufora o długości 

msg_len, wskazywanego przez msg_ptr najstarszą wiadomość o największym 

priorytecie. Jeśli msg_prio_p!=NULL, to wartość *msg_prio_p staje się równa 

priorytetowi pobranej wiadomości. 

Przy pomyślnym wykonaniu funkcja zwraca długość pobranej wiadomości. W 

przypadku niepowodzenia funkcja zwraca –1 (ustawiając errno), a kolejka 

komunikatów nie ulega zmianie.

int mq_timedreceive(mqd_t mqdes, char *msg_ptr, size_t msg_len,   

unsigned *msg_prio_p, const struct timespec *abs_timeout);

Funkcja pobiera wiadomość tak jak mq_receive(), oczekując najdłużej do 

momentu określonego w strukturze wskazywanej przez abs_timeout. (czas 

odmierzany przez zegar CLOCK_REALTIME).

Uwagi: 

▪ Obydwie funkcje mogą zostać przerwane po obsłużeniu przez proces sygnału.

▪ Jeśli proces ustawi powiadomienie asynchroniczne i zablokuje się na mq_receive(), to 

nowa wiadomość odblokuje mq_receive() (ma pierwszeństwo).



Slajdy do wykładu „Systemy operacyjne 2”

Testowanie statusu kolejki

int mq_getattr(mqd_t mqdes, struct mq_attr *attr);

Pobiera do struktury wskazywanej przez attr atrybuty kolejki skojarzonej z 
deskryptorem mqdes

int mq_setattr( mqd_t mqdes, struct mq_attr *newattr, 
struct mq_attr *oldattr );

Ustawia atrybuty kolejki skojarzonej z deskryptorem mqdes. 

newattr wskazuje na strukturę z nowymi atrybutami, a oldattr (jeśli nie 
NULL) – wskazuje na strukturę, w której funkcja umieszcza poprzednie 
atrybuty. 

Uwaga: funkcja mq_setattr może zmienić jedynie atrybut mq_flags (0 albo 
O_NONBLOCK).



Slajdy do wykładu „Systemy operacyjne 2”

Fragmenty przykładu

Nadawca Odbiorca

char buf[25], *mq_name=...;

mqd_t mqdes;

struct mq_attr attr;

attr.mq_maxmsg=1;//one msg only

attr.mq_msgsize=sizeof(buf);

mqdes=mq_open(mq_name, 

O_RDWR | O_CREAT, FILE_MODE,

&attr);

if(mqdes==(mqd_t)-1){/* wyjście z błędem*/ }

while(fgets(buf,sizeof(buf),stdin)){

char *ptr;

int pri=msgnr%3;

ptr=strchr(buf,'\n');

if(ptr) *ptr='\0'; 

else buf[sizeof(buf)-1]='\0';

if(mq_send(mqdes,buf,strlen(buf)+1,pri)

<0) break;

msgnr++;

}

mq_close(mqdes);

int main(int argc, char *argv[]){

char buf[25], *mq_name=...;

unsigned int pri, timeout=...;

mqd_t mqdes;

struct mq_attr attr;

If((mqdes=mq_open(mq_name,

O_RDONLY,NULL))==(mqd_t)-1)

{/* błąd */}

if(mq_getattr(mqdes,&attr)<0) {/* błąd */}

if(attr.mq_msgsize>sizeof(buf)){ exit(1); }

while(1) {

if(mq_receive(mqdes,buf,sizeof(buf),

&pri)<0) break; 

buf[sizeof(buf)-1]='\0';

puts(buf);

}

mq_close(mqdes);



Slajdy do wykładu „Systemy operacyjne 2”

Asynchroniczne powiadomienie
int mq_notify(mqd_mqdes, struct sigevent *notification);

Funkcja umożliwia dla każdej kolejki POSIX rejestrację pojedynczego
powiadomienia o asynchronicznym zdarzeniu, polegającym na pojawieniu się 
komunikatu w pustej kolejce. Dla danej kolejki może być powiadamiany 
(jednokrotnie) tylko jeden proces. W reakcji na zdarzenie można zamówić:

▪ doręczenie wskazanego sygnału do procesu odbiorcy (SIGEV_SIGNAL)
▪ uruchomienie wątku ze wskazaną funkcją roboczą i argumentem wywołania 

(SIGEV_THREAD )
▪ brak powiadamiania (SIGEV_NONE)
Jeżeli notification==NULL →proces odwołuje powiadomienie (jeśli je wcześniej zamówił)

struct sigevent {

int sigev_notify;  /* Metoda: SIGEV_NONE, SIGEV_SIGNAL, SIGEV_THREAD */

int sigev_signo;       /* Sygnał powiadomienia (dla SIGEV_SIGNAL) */

union sigval sigev_value; /* Dane przekazane z powiadomieniem */ 

void (*sigev_notify_function) (union sigval);   /* Funkcja robocza wątku (dla metody 
SIGEV_THREAD) */

void *sigev_notify_attributes;  /* Atrybuty funkcji roboczej wątku powiadamiania */

};

union sigval {                /* Dane przekazane z powiadomieniem */

int sival_int; 

void *sival_ptr; 

};

Uwaga: po doręczenia powiadomienia do procesu rejestracja jest usuwana



Slajdy do wykładu „Systemy operacyjne 2”

Przykład wykorzystania powiadomienia –

doręczenie sygnału SIGUSR1

void handler(int sig, siginfo_t *s, void *p){/* Uwaga: obsługa sygnałów RT */

signr=sig;  pid_nr=s->si_pid; return;

}

static struct sigaction siga;

static struct sigevent not;

...

mqdes =mq_open(mq_name,O_RDONLY,NULL);

if (mqdes==(mqd_t)-1){/* obsługa błędu */}

siga.sa_flags=SA_SIGINFO; siga.sa_sigaction=handler;

if(sigaction(SIGUSR1,&siga,NULL)<0){/* obsługa błędu */}

not.sigev_notify=SIGEV_SIGNAL; /* Powiadomienie sygnałem */

not.sigev_signo=SIGUSR1; /* Wybór numeru sygnału powiadomienia */

if(mq_notify(mqdes, &not)<0){/* błąd */ }/* Rejestracja powiadomienia */



Slajdy do wykładu „Systemy operacyjne 2”

Przykład powiadomienia przez 

rozpoczęcie nowego wątku
int main(int argc, char *argv[]){ 

mqd_t mqdes; 

struct sigevent not;

if(argc!= 2){ /* błąd wywołania, brak nazwy kolejki */}

mqdes = mq_open(argv[1], O_RDONLY);

if (mqdes == (mqd_t) -1) {/* błąd */}

not.sigev_notify = SIGEV_THREAD;/* Powiadamianie wątkiem */

not.sigev_notify_function = tfunc; /* F. robocza wątku */

not.sigev_notify_attributes = NULL;

not.sigev_value.sival_ptr = & mqdes; /* Arg. f. roboczej*/

if (mq_notify(mqdes, &not) == -1) {/* błąd */}

pause(); /* Proces będzie zakończony w f. roboczej wątku */

return EXIT_SUCCESS;

}



Slajdy do wykładu „Systemy operacyjne 2”

C.d. przykładu

static void tfunc(union sigval sv){/* Funkcja robocza wątku 

powiadamiania */

struct mq_attr attr;

ssize_t nr;

void *buf;

mqd_t mqdes = *((mqd_t *) sv.sival_ptr); /* Deskryptor

kolejki */

/* Pobranie maks. długości wiadomości */

if (mq_getattr(mqdes, &attr) == -1) {/* błąd */ }

/* Alokacja bufora wiadomości */

buf = malloc(attr.mq_msgsize);  

if (buf == NULL) {/* błąd */}

/* Wczytanie wiadomości (pierwszej w kolejce) */

nr = mq_receive(mqdes, buf, attr.mq_msgsize, NULL);

if (nr == -1) {/* błąd */}

printf(„Wczytano %ld B z kolejki\n”,(long) nr);

free(buf);/* Zwolnienie bufora */

exit(EXIT_SUCCESS);         /* Zakończenie procesu */

}



Slajdy do wykładu „Systemy operacyjne 2”

Odwzorowanie plików w pamięci

off 

len 

0 

plik 

przestrzeń adresowa 
procesu 

ptr 

int    fd=open(”plik”, O_RDWR); 
char *ptr=mmap(0,PROT_READ|PROT_WRITE, 
                           MAP_SHARED, fd, off); 

int fd=open(„plik”,O_RDWR);

char *ptr=mmap(0, len, PROT_READ|PROT_WRITE,

MAP_SHARED, fd, off);

Idea odwzorowania (części) pliku w przestrzeń adresową procesu

ptr[0] jest odniesieniem do bajtu pliku numer off

ptr[len-1] jest odniesieniem do ostatniego odwzorowanego bajtu pliku
o numerze off+len-1



Slajdy do wykładu „Systemy operacyjne 2”

Odwzorowanie plików w pamięci – c.d.

void * mmap (void *addr, size_t len, int protect, int flags, int fd, off_t off) –
funkcja tworzy odwzorowanie len bajtów pliku związanego z deskryptorem fd, 
począwszy od bajtu nr off, z obszarem pamięci, do którego wskaźnik zwraca 
mmap. Parametr addr, podpowiadający mmap lokalizację użytego fragmentu 
przestrzeni adresowej, zwykle przybiera wartość 0 (tzn. wybiera mmap)

Znaczenie parametru protect:

▪ MAP_PRIVATE – modyfikacja w pamięci nie jest zapisywana do pliku

▪ MAP_SHARED – zapis do odwzorowanego obszaru w pamięci spowoduje zapis 
do odwzorowanego pliku

protect zawiera też bity praw dostępu: PROT_READ, PROT_WRITE, PROT_EXEC

int msync (void *addr, size_t len, int flags) – wymusza zapis zawartości 
obszaru pamięci (len bajtów, począwszy od addresu addr) odwzorowanego w 
trybie MAP_SHARED do odwzorowanego pliku. Znaczenie parametru flags:

▪ MS_SYNC – funkcja czeka, aż dane zostaną zapisane

▪ MS_ASYNC – funkcja inicjuje zapis, ale nie czeka na zakończenie

int munmap (void *addr, size_t len) –usuwa wszystkie odwzorowania adresów 
pamięci, od addr do addre+len-1



Slajdy do wykładu „Systemy operacyjne 2”

Pamięć wspólna POSIX IPC
int shm_open(const char *name, int oflag,

mode_t mode);

Tworzy nowy segment pamięci i/lub ustanawia połączenie między segmentem a 

deskryptorem pliku;  zwraca deskryptor reprezentujący otwarty segment (-1 przy 

niepowodzeniu). Wymagania na nazwę (name) – jak dla kolejki komunikatów.

Flagi oflag:

▪ 0 - ustanawia połączenie

▪ O_CREAT - tworzy nowy segment i ustanawia połączenie

▪ O_EXCL| O_CREAT - tworzy nowy segment i ustanawia połączenie lub zwraca 

błąd, jeśli segment istnieje

Uwagi:  

▪ Tworzenie nowego segmentu pamięci wymaga podania bitów ochrony pliku: mode

▪ W SO Linux obiekty pamięci wspólnej POSIX tworzone są w wirtualnym systemie 

plików, który można domontować np. do katalogu /dev/shm

▪ Dokumentacja segmentu pamięci wspólnej: shm_overview(7)



Slajdy do wykładu „Systemy operacyjne 2”

Pamięć wspólna POSIX IPC

Po otwarciu segmentu należy:

▪ określić rozmiar segmentu (tak jak rozmiar pliku) za pomocą funkcji:

int ftruncate(int fildes, off_t length);

Uwaga: bezpośrednio po utworzeniu segment ma rozmiar 0

▪ odwzorować segment na przestrzeń adresową procesu/wątku (tak jak 

zwykły plik) za pomocą funkcji mmap()z flagą MAP_SHARED

▪ korzystać z odwzorowania tak, jak w przypadku zwykłego adresu

▪ po zakończeniu usunąć odwzorowanie za pomocą funkcji munmap()

▪ funkcja

int shm_unlink(const char *name);

Usuwa wskazaną nazwę (name) segmentu pamięci dzielonej



Slajdy do wykładu „Systemy operacyjne 2”

Pamięć wspólna POSIX IPC – c.d.

Inne funkcje systemowe, które dotyczą pamięci wspólnej POSIX IPC:

▪ close() – umożliwia zamknięcie deskryptora utworzonego przez 

shm_open(), gdy nie jest już potrzebny.

▪ fstat() – wypełnia strukturę typu stat informacjami o pamięci wspólnej, w 

tym:

▪ st_size - rozmiar,

▪ st_mode – prawa dostępu

▪ st_uid, st_gid –UID i GID właściciela

▪ fchown() – umożliwia zmianę właściciela

▪ fchmod() – umożliwia zmianę praw dostępu



Slajdy do wykładu „Systemy operacyjne 2”

Przykład użycia pamięci wspólnej
#define SHM_NAME ” /shm_tool” // segment name

#define SHM_LEN 100 // segment size

...

int shm_fd;  /* shm id */

char  *segptr; /* mapped adres of the start of shm segment */

if((shm_fd = shm_open(SHM_NAME,O_CREAT|O_EXCL|O_RDWR,0666)) == -1){

if(errno!=EEXIST){/* error handling */ ...}

else {

printf("Shared memory segment exists\n"); 

if((shm_fd = shm_open(SHM_NAME, O_RDWR, 0666)) == -1){

/* error handling */ ...

}

}

} else {

printf(„New shared memory segment created\n");

if(ftruncate(shm_fd,SHM_LEN)==-1){ /* error handling */ ...}

}

if((segptr = (char *)mmap(NULL, SHM_LEN,PROT_READ|PROT_WRITE,

MAP_SHARED, shm_fd,0)) == (char *)-1){

/* error handling */ ...

}

/* segptr[0],..., segptr[SHM_LEN-1] can be used to access shm segment 

* as if it was a memory buffer of length SHM_LEN

*/

munmap(segptr , SHM_LEN ); /* invalidate shm mapping when not needed */



Slajdy do wykładu „Systemy operacyjne 2”

Mechanizmy IPC Systemu V

▪ Trwałość obiektów IPC Systemu V to tzw. trwałość jądra (kernel persistence) –

obiekty istnieją do przeładowania systemu lub do jawnego usunięcia

▪ Przestrzeń nazw:

▪ Obiekty są globalne (jedna przestrzeń nazw dla wszystkich procesów)

▪ Klucz typu key_t (liczba całkowita dodatnia) identyfikuje obiekt w systemie. 

Zalecany sposób generacji:

key_t ftok(const char *pathname, int id);

▪ Po otwarciu obiekt jest dostępny przez identyfikator obiektu IPC Systemu V; 

identyfikator jest unikalny w ramach jednego mechanizmu IPC

Kolejki 

komunikatów

Pamięć 

wspólna

Semafory

Plik nagłówkowy <sys/msg.h> <sys/shm.h> <sys/sem.h>

Tworzenie/ otwieranie msgget() shmget() semget()

Operacje sterujące msgctl() shmctl() semctl()

Operacje komunikacji msgsnd()

msgrcv()

shmat()

shmdt()

semop()



Slajdy do wykładu „Systemy operacyjne 2”

IPC Systemu V – polecenia systemowe

Wyświetlanie własności obiektów IPC Systemu V aktualnie dostępnych

ipcs [ -asmq ] [ -clupt ] % informacja o obiektach wskazanego typu

ipcs [ -smq ] -i id % informacja o obiekcie o wskazanym identyfikatorze

Można również używać interfejsu systemu plików (man namespaces(7)):

/proc/sysvipc/msg, /proc/sysvipc/sem, /proc/sysvipc/shm

Usuwanie obiektów IPC Systemu V aktualnie dostępnych (w wypadku 

segmentów pamięci usuwanie jest odroczone – do czasu odłączenia 

wszystkich procesów-użytkowników) wymaga podania identyfikator id albo 

klucza key:

ipcrm {msg | sem | shm } id % usuwanie obiektu zadanego typu  

ipcrm [ -q | -s | -m] id % j.w.

ipcrm [ -Q | -S | -M] key % j.w.



Slajdy do wykładu „Systemy operacyjne 2”

Prawa dostępu do obiektów IPC

Dla każdego obiektu IPC jądro systemu przechowuje strukturę (patrz 
<sys/ipc.h>, svipc(7) ) opisującą prawa dostępu:

struct ipc_perm {

uid_t uid; /* UID użytkownika – właściciela */

gid_t gid; /* GID użytkownika – właściciela */

uid_t cuid; /* UID użytkownika – twórcy  obiektu */

gid_t cgid; /* GID użytkownika – twórcy obiektu */

mode_t mode; /* tryby dostępu (RWXRWXRWX) */

ulong_t seq; /* (SVR4) numer kolejny, zwiększany o 1 

przy każdym usunięciu obiektu 

o danym kluczu */

key_t key; /* klucz */

};

Sprawdzenia praw dostępu dokonuje się przy każdej operacji na obiekcie IPC.



Slajdy do wykładu „Systemy operacyjne 2”

Tworzenie i otwieranie obiektów IPC

Do tworzenia i otwierania dostępu do obiektów IPC Systemu V służy 
wywołanie o postaci:

int XXXget(key_t key, /* sz, */ int oflag)

XXX jest zastępowane przez

msg - dla kolejki komunikatów

shm - dla pamięci wspólnej (wówczas potrzebny jest parametr size_t sz)

sem - dla semaforów (wówczas potrzebny jest parametr int sz)

oflag jest kombinacją wartości określających prawa dostępu (RW-RW-RW-) 
oraz IPC_CREAT i ew. IPC_EXCL

Funkcja zwraca całkowitoliczbowy identyfikator obiektu, który jest 
wykorzystywany przez proces do realizacji operacji na obiekcie. Identyfikator 
jest unikalny w ramach każdego typu obiektu IPC.

Uwaga: podanie w argumencie key stałej IPC_PRIVATE daje gwarancję, że 
jest tworzony nowy, unikatowy obiekt IPC. Nie istnieje żadna kombinacja 
pathname i id w wywołaniu ftok(), która tworzy klucz o wartości 
IPC_PRIVATE



Slajdy do wykładu „Systemy operacyjne 2”

Argument oflag Obiekt o podanym 

kluczu nie istnieje

Obiekt o podanym 

kluczu istnieje

Brak sygnalizatorów

IPC_CREAT 

IPC_EXCL

Błąd, errno==ENOENT w porządku, wskazanie 

istniejącego obiektu

IPC_CREAT w porządku, utworzenie 

nowego wpisu

w porządku, wskazanie 

istniejącego obiektu

IPC_CREAT | 

IPC_EXCL

w porządku, utworzenie 

nowego wpisu

błąd, errno==EEXIST

Tworzenie i otwieranie obiektów IPC – c.d

Sposoby tworzenia/otwierania dostępu do obiektów IPC Systemu V.



Slajdy do wykładu „Systemy operacyjne 2”

Kolejki komunikatów IPC Systemu V
▪ Komunikaty mają postać struktury:

struct msgbuf {

long mtype; /* typ komunikatu, musi być >0 */

char mtext[1]; /* dane komunikatu, długość >=0 (tu:1)*/

}

Maksymalna długość komunikatu (MSGMAX) i maksymalna liczba kolejek komunikatów w 
systemie (MSGMNI) są konfigurowalna na poziomie systemu.

▪ Kolejka jest identyfikowana przez identyfikator kolejki, zmienną typu int.

▪ Kolejka ma określoną, w czasie tworzenia, długość (maksymalna wartość 
MSGMNB konfigurowalna na poziomie systemu). Gdy zostanie ona przekroczona, 
proces piszący do kolejki będzie zablokowany (przy pracy w domyślnym trybie: 
blokującym).

▪ Komunikaty odczytywane z kolejki zachowują strukturę, chociaż w kolejce mogą 
znajdować się komunikaty o różnej długości.

▪ Operacja odczytu z pustej kolejki blokuje odbiorcę (wątek), jeśli dostęp jest w trybie 
z blokowaniem.

Uwaga: Wartości (MSGMAX, MSGMNI, MSGMNB) są dostępne przez interfejs 
systemu plików (msgmax, msgmnb, msgmni w /proc/kernel)



Slajdy do wykładu „Systemy operacyjne 2”

Wysyłanie komunikatów

int msgsnd( int msqid, struct msgbuf *ptr, 

size_t len, int flag);

Funkcja wstawia komunikat o długości len wskazywany przez ptr do kolejki 
o identyfikatorze msqid, zwracając normalnie 0 (bądź –1 w przypadku 
niepowodzenia, errno określa przyczynę).

flag o wartości 0 => funkcja blokuje, jeśli brak miejsca na komunikat

flag o wartości IPC_NOWAIT => funkcja powraca z błędem 
(errno==EAGAIN), jeśli brakuje miejsca na komunikat w kolejce.

Uwagi:

▪ funkcja msgsnd nie interpretuje pola mtext struktury msgbuf

▪ len określa rozmiar danych, t.j. sizeof(msgbuf)=sizeof(long); len może 
być równe 0 (struktura komunikatu zawiera tylko typ).

▪ pole mtype struktury msgbuf pozwala wiązać wiadomości z tą samą 
wartością mtype w listę (porządek FIFO); system układa też inną listę: 
wszystkich komunikatów danej kolejki, uporządkowaną wg kolejności 
wstawienia do kolejki



Slajdy do wykładu „Systemy operacyjne 2”

Odbiór komunikatów

int msgrcv(int msqid, struct msgbuf *ptr, 

size_t len, long type, int flag);

Funkcja odczytuje komunikat o maksymalnej długości len do struktury 
wskazywanej przez ptr z kolejki o identyfikatorze msqid, zwracając 
normalnie 0 (bądź –1 w przypadku niepowodzenia, errno określa 
przyczynę). Domyślnie funkcja blokuje, jeśli nie ma żądanej wiadomości.

type o wartości 0 => funkcja odczytuje najstarszy komunikat

type >0 => funkcja odczytuje najstarszy komunikat podanego typu (usuwając 
go z kolejki), jeśli jednocześnie (flag & MSG_EXCEPT) to pobierany jest 
najstarszy komunikat typu różnego od type

type<0 => funkcja odczytuje najstarszy komunikat typu <= |type|

flag o wartości 0 => funkcja blokuje, jeśli brak żądanego komunikatu

(flag & IPC_NOWAIT)!=0 => funkcja powraca z błędem (ENOMSG), jeśli 
aktualnie nie ma odpowiedniego komunikatu w kolejce

(flag & MSG_NOERROR)!=0  => funkcja obcina komunikat, który jest za długi 
(domyślnie zwracany jest błąd E2BIG).



Slajdy do wykładu „Systemy operacyjne 2”

Operacje sterujące kolejką komunikatów
int msgctl(int msqid, int cmd, struct msqid_ds *buf);

Dostępne polecenia (cmd) dla kolejki o danym identyfikatorze (msqid):

IPC_RMID – usuwa z systemu kolejkę komunikatów (z wiadomościami)

IPC_SET – ustawia nowe parametry kolejki, korzystając z czterech pól struktury msqid_ds:
msg_perm.uid, msg_perm.gid, msg_perm.mode,  msg_qbytes, aktualizując też 
automatycznie pole msg_ctime

Polecenia te może wykonać tylko proces z EUID równym 0, msg_perm.cuid,msg_perm.uid

IPC_STAT – przekazuje do struktury wskazanej przez buf aktualne wartości parametrów kolejki

struct msqid_ds zawiera m.in. następujące pola:

struct ipc_perm msg_perm; /* prawa dostępu */

struct msg *msg_first, *msg_last; /* wskaźniki listy komunikatów */

msglen_t msg_cbytes; /* bieżąca liczba bajtów w kolejce */

msgqnum_t msg_qnum; /* bieżąca liczba komunikatów w kolejce */

msglen_t msg_qbytes; /* maks. dozwolona liczba bajtów w kolejce */

pid_t msg_lspid, msg_lrpid; /* PID procesu ostatnio wywołującego

msgsnd(),msgrcv() */

time_t msg_stime, msg_rtime, msg_ctime; /* czas ostatniego 

wywołania msgsnd(), msgrcv(), msgctl() */



Slajdy do wykładu „Systemy operacyjne 2”

Fragmenty przykładu (msend1/mrecv1)

Nadawca (msend1.c) Odbiorca (mrecv1.c)

int queue, i; packet p1;

if((queue = msgget(QUEKEY,

IPC_CREAT| S_IRUSR| S_IWUSR|

S_IRGRP|S_IWGRP))<0){

/* error */

}

p1.mtype=1;

for(i = 0 ; i < 10; i++){

snprintf(p1.mtext,TXTSZ,

"Packet  %d\n”,i)

if(TEMP_FAILURE_RETRY(

msgsnd(queue ,&p1, TXTSZ,

0))<0){

/* error */

}

sleep(1);

}/* for() */

sleep(5);/* wait for reader */

if(msgctl(queue ,IPC_RMID,NULL)<0){

/* error handling */

};

int queue; packet p1;

if((queue = msgget(QUEKEY,

IPC_CREAT|S_IRUSR|S_IWUSR|

S_IRGRP|S_IWGRP))<0){

/* error */

}

for(;;){

if(TEMP_FAILURE_RETRY(

msgrcv(queue ,& p1, TXTSZ,

1,0))<0)

break;

printf("%s", p1.mtext);

}

if(errno) perror("mrecv1 error");

==========================

#define QUEKEY 0x00FF00

#define TXTSZ 80

typedef struct {

long mtype;

char mtext[TXTSZ];

} packet;



Slajdy do wykładu „Systemy operacyjne 2”

Pamięć wspólna IPC Systemu V
int shmget(key_t key, size_t len, int oflag);

Tworzy nowy/otwiera istniejący segment pamięci wspólnej o rozmiarze len i kluczu 
key. oflag jest alternatywą bitową praw dostępu i ew. IPC_CREAT, IPC_EXCL. 
Tworzony segment jest wypełniany zerami. W przypadku powodzenia funkcja 
zwraca identyfikator segmentu; przy niepowodzeniu –1.

void * shmat(int shmid, const void *addr, int flag);

Dołącza segment pamięci wspólnej o identyfikatorze shmid , zwracając wskaźnik do 
początku segmentu albo -1 – przy niepowodzeniu.

addr == 0 => adres segmentu wybierany jest przez jądro

addr != 0 => adres pod którym system ma dołączyć segment; jeśli przy tym      (flag 
& SHM_RND) !=0 => adres jest zaokrąglany do wielokrotności rozmiaru strony 
pamięci wirtualnej.

Segment jest dołączany w trybie tylko do odczytu, gdy (flag&SHM_RDONLY)!=0, 
domyślnie – w trybie odczytu i zapisu. 

int shmdt(const void *shmaddr);

Odłącza segment wskazywany przez shmaddr. Segment nie jest usuwany, chyba że 
zaznaczono segment do usunięcia (shmctl) i nie ma więcej dołączeń do segmentu 
w systemie).



Slajdy do wykładu „Systemy operacyjne 2”

Operacje na pamięci wspólnej

int shmctl(int shmid, int cmd, struct shmid_ds *buf);

Dostępne polecenia (cmd) dla segmentu o danym identyfikatorze (shmid):

IPC_RMID – zaznacza segment do usunięcia (usunięcie odbędzie się po 

odłączeniu wszystkich procesów od segmentu, bądź przy zamknięciu 

systemu). Segment może usunąć proces o EUID==0, przez twórcę albo 

właściciela – określonych przez pola shm_perm.cuid i shm_perm.uid w 

strukturze informacyjnej shmid_ds segmentu.

IPC_SET – ustawia w strukturze informacyjnej shmid_ds segmentu wartości pól 

shm_perm.uid, shm_perm.gid, shm_perm.mode na wartości pobrane z 

bufora wskazywanego przez buf

Polecenia te może wykonać tylko proces z EUID równym 0, shm_perm.cuid, 

shm_perm.uid (patrz struct shmid_ds)

IPC_STAT – zapisuje zawartość struktury shmid_ds segmentu do bufora 

wskazywanego przez buf



Slajdy do wykładu „Systemy operacyjne 2”

Struktura opisująca segment pamięci

struct shmid_ds. {

struct _ipc_perm shm_perm; /* struct praw dostępu */

size_t shm_segsz; /* rozmiar segmentu w bajtach */

pid_tshm_lpid; /* PID procesu ostatniej operacji */

pid_tshm_cpid; /* PID procesu twórcy */

shmat_t shm_nattch; /* aktualna liczba dołączeń */

time_t shm_atime; /* czas ostatniego dołączenia */

time_t shm_dtime; /* czas ostatniego odłączenia */

time_t shm_ctime; /* czas ostatniej zmiany shmid_ds

funkcją shmctl */

...

};



Slajdy do wykładu „Systemy operacyjne 2”

Pamięć wspólna – prosty schemat użycia

key_t key; int shmid;  char  *segptr; /* deklaracja zmiennych */

key = ftok(".", ‘A'); /* pozyskanie klucza */

if((shmid = shmget(key , SEGSIZE, IPC_CREAT|IPC_EXCL|0666)) == -1){

if(errno==EEXIST){

printf("Segment pamięci istnieje\n");

if((shmid = shmget(key , SEGSIZE, 0)) == -1){/* błąd */ ...}

} else {/* błąd */ ... }

} else {

/* Tu można wykonać inicjalizację segmentu (domyślnie zerowany) */

}

/* Dołączenie segmentu pamięci wspólnej do procesu */

if((segptr = (char *)shmat(shmid , 0, 0)) == (char *)-1) {

/* Błąd dołączenia segmentu */ ...

} else printf(”Segment dołączony\n”);

/* Użytkowanie segmentu, t.j. odniesienia do

segptr [0],... segptr [SEGSIZE-1] 

*/

shmdt(segptr ); /* Odłączenie segmentu po wykorzystaniu */



Slajdy do wykładu „Systemy operacyjne 2”

Efekty wywołania funkcji systemowych

Typ obiektu fork() exec() _exit()

Sys.V msg bez wpływu bez wpływu bez wpływu

POSIX MQ potomek dziedziczy 

kopie otwartych deskr.

deskryptory są

zamykane

deskryptory sa

zamykane

Sys V shm przydzielone segmenty 

shm są dołączane do 

procesu potomnego 

segmenty są 

odłączane

segmenty są 

odłączane

POSIX shm potomek zachowuje 

odwzorowanie w 

pamięci

odwzorowanie jest

usuwane

odwzorowanie jest

usuwane

Odwz. 

Pamięci 

przez mmap()

Potomek zachowuje 

odwzorowanie w 

pamięci

odwzorowanie jest

usuwane

odwzorowanie jest

usuwane


