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POSIX IPC

Kolejki Pamiec Semafory
komunikatéw | wspélna

Plik nagtéwkowy <mgueue.h> <sys/mman.h> <semaphore.h>
Tworzenie/ mq_open(), shm_open(), sem_open()
otwieranie/usuwanie mq_close(), shm_unlink() sem_close(),
mq_unlink() sem_unlink(),
sem_init(),
sem_destroy()
Operacje sterujgce mq_getattr(), ftruncate(),
mq_setattr() fstat()
Operacje komunikacji mq_send() mmap() sem_wait(),
mq_receive(), munmap() sem_trywait(),
mq_notify() sem_post(),

sem_getvalue()

" Trwatosc¢ obiektéw POSIX IPC to tzw. trwatos¢ jadra za wyjatkiem semafora w
pamieci, ktéry ma trwatos¢ procesu (process persistence) — obiekt istnieje tak
dtugo, az ostatni proces z niego korzystajgcy dokona zamkniecia obiektu.

Slajdy do wyktadu ,Systemy operacyjne 2”



POSIX - kolejki komunikatow
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Schemat komunikacji proceséw za pomocg kolejki komunikatow

Podstawowe cechy kolejek komunikatow:

" |stnieje mozliwosc¢ wskazania tej samej kolejki przez niezwigzane procesy.
Kolejka komunikatow moze by¢ widoczna w systemie plikdw (Linux), ale nie musi

" Przekazywanie komunikatow (o dtugosci 0 do mq_msgsize) jest niezawodne.
Kolejka ma trwatos¢ w ramach systemu, tzn. istnieje do restartu systemu lub do
jawnego usuniecia.

" W procesie kolejka jest identyfikowana przez deskryptor kolejki, zmienng typu
mqd_t.. Deskryptor kolejki moze by¢ implementowany jako deskryptor pliku.

® Kolejka ma skonczong pojemnos¢ (mg_maxmsg komunikatow)
" Dostep do funkcji realizujgcych kolejke wymaga uzycia biblioteki rt.
Slajdy do wyktadu ,Systemy operacyjne 2”



POSIX - kolejki komunikatow

Komunikaty majg dtugos¢ maksymalng (mqg_msgsize) okreslong w czasie
tworzenia kolejki. Operacje odczytu muszg by¢ zawsze przygotowane na odbior
komunikatu o0 maksymalnej dtugosci.

Kolejka ma okreslong, w czasie tworzenia, dtugos¢ (mqg_maxmsg). Gdy
zostanie ona przekroczona - proces piszgcy do kolejki bedzie zablokowany
(przy pracy w domysinym trybie: blokujacym) - az bedzie dostatecznie duzo
miejsca wolnego w kolejce, bgdz do przerwania sygnatem.

Komunikaty odczytywane z kolejki zachowujg strukture, chociaz w kolejce
mogg znajdowac sie komunikaty o roznej dtugosci.

Komunikatom mozna nadac priorytet (liczba catkowita bez znaku, mniejsza od
state) MQ_PRIO_MAX>=32, do pobrania przez sysconf()). Komunikaty o
najwyzszym priorytecie sg umieszczane na poczgtku kolejki (w porzadku FIFO).

Operacja odczytu z pustej kolejki blokuje odbiorce (watek), jesli dostep jest w
trybie z blokowaniem.

Implementacja definiuje MQ _OPEN_MAX (>=8) — maksymalng liczbe kolejek,
ktore w danej chwili mogg byC otwarte przez jeden proces.

Istnieje interfejs plikowy do parametrow kolejki (man namespaces(7)): patrz
/proc/sys/fs/imqueue.
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Podstawowe typy i plik nagiowkowy

" Podstawowe typy danych i prototypy funkcji sg w pliku nagtdwkowym:
<mqueue.h>

" Atrybuty kolejki przekazywane sg w strukturze:

struct mg attr ({
long mg flags; /* 0 albo O NONBLOCK */
long mg maxmsg; /* Maks. liczba wiadomosci w kolejce*/
long mg msgsize; /* Maks. diugos$¢ wiadomosci (B) */
long mg curmsgs; /* Aktualna liczba komunikatdw
w kolejce */

b
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Tworzenie kolejki/otwieranie dostepu

mad t mg open (const char *name, int oflag
/* , mode t mode, struct mg attr *attr */);

Funkcja mqg_open zwraca identyfikator kolejki, albo (mqgd_t)(-1) , ustawiajgc kod
btedu w zmiennej globalnej errno.

Parametry wywotania:

name — tancuch identyfikujgcy kolejke komunikatéw.

oflag - tryb tworzenia kolejki, jak dla plikdow (O_RDONLY, O WRONLY, O RDWR,
O_CREAT, O_EXCL, O _NONBLOCK)

mode - prawa dostepu do tworzonej kolejki (r i w - jak dla plikow)

attr - wsk. do struktury atrybutéw kolejki (pola: mg_maxmsg, mg_msgsize)
Uwaaqi:

* wykonanie funkcji moze zosta¢ przerwane (kod wyjscia —1, errno==EINTR), wskutek
obstugi sygnatu przez proces wywotujgcy mqg_open()

W SO Linux kolejki tworzone sg w wirtualnym systemie plikdw, ktéry mozna domontowac
np. do katalogu /dev/Imqgueue. Informacje o kolejkach sg dostepne w poddrzewie
systemu plikow: /proc/sys/fs/mqueue/
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POSIX MQ — przestrzen nazw i
identyfikatorow

® Parametr name wskazuje na napis (C-string) bedacy nazwg kolejki komunikatow
POSIX.

= POSIX nie wymaga, by nazwa byta widoczna w systemie plikow czy byta
dostepna dla funkcji systemowych korzystajgcych z nazw sciezkowych.

= Parametr name musi spetnia¢ wymagania nazwy sciezkowej (pathname).

- Jesli name rozpoczyna znak ,/’, to kazdy proces wywotujgcy mq_open()
z takg nazwg wskazuje na tg samg kolejke komunikatow — poki nie
zostanie usunieta z systemu.

- Jesli name nie rozpoczyna znak ,/’ — konsekwencje zalezg od
implementacii.

- Konsekwencje wielokrotnego wystgpienia w nazwie znaku ,/’ zalezg od
implementacji. W SO Linux name rozpoczyna znak ,/’; nie moze by¢
wiecej takich znakow w name.

® Deskryptor kolejki komunikatow POSIX moze by¢ implementowany za pomocg

deskryptora plikow. Wowczas proces moze jednoczesnie mie€ otwartych
{OPEN_MAX} plikdw i kolejek.

®" Dokumentacja kolejek w systemie Linux : mg_overview(7)
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Zamykanie dostepu | kasowanie kolejki

" Gdy proces przestaje korzystac z kolejki powinien jg zamkng¢ za pomocg
int mq close(mgd t mq);

® Kolejke kasuje sie za pomoca:

int mq unlink(char *name);

Funkcja powoduje natychmiastowe usuniecie nazwy wskazanej kolejki z
systemu; sama kolejka jest usuwana z systemu wtedy, gdy wszystkie

procesy, ktore otwarty dostep do tej kolejki zamkng deskryptory kolejki (za
pomocg mqg_close) .
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Wysytanie komunikatow

int t mq send( mgd t mgdes, const char *msg ptr,
size t msg len, unsigned msg prio );
wstawianie komunikatu (msg_ptr[0],...msg_ptr[msg_len-1]) do kolejki mgdes
int mqg timedsend( mgd t mgdes, const char *msg ptr,
size t msg len, unsigned msg prio,
const struct timespec *abs timeout ) ;
wstawianie komunikatu do kolejki (z ograniczonym czekaﬁem)

Parametry wywotania:

mqgdes - identyfikator kolejki komunikatow

msg_ptr - adres bufora wysytanego komunikatu

msg_len - dtugos¢ wysytanego komunikatu

msg_prio - priorytet komunikatu (od 0 do MQ_PRIORITY_MAX)

abs_timeout - odlegtosc czasowa (od potnocy 1.1.1970r.) konca okresu czekania na

dostep do kolejki
struct timespec {
time_ttv_sec; [* sekundy */
long tv_nsec; [* nanosekundy */

Funkcje wysytajgce zwracajg 0 przy pomysinym wstawieniu komunikatu (mqg_timedsend() - w
zadanym przedziale czasu), albo —1 przy niepowodzeniu (errno zawiera kod btedu).

Jesli kilka watkow blokuje na mqg_send()/mqg_timedsend() z powodu petnej kolejki, to przy
zwolnieniu miejsca odblokowywany jest watek o najwyzszym priorytecie, czekajgcy najdtuzej.

Uwaga: obydwie funkcje mogg zostac przerwane po obstuzeniu przez proces sygnatu.
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Odbior komunikatow

Int mg_receive(mqd_t mqdes, char *msg_ptr, size_t msg_len,
unsigned *msg_prio_p);

Funkcja pobiera z kolejki zwigzanej z deskryptorem mqgdes do bufora o dtugosci
msg_len, wskazywanego przez msg_ptr najstarszg wiadomos¢ o najwiekszym
priorytecie. Jesli msg_prio_p!=NULL, to wartos¢ *msg_prio_p staje sie rowna
priorytetowi pobranej wiadomosci.

Przy pomysinym wykonaniu funkcja zwraca dtugos¢ pobranej wiadomosci. W
przypadku niepowodzenia funkcja zwraca —1 (ustawiajgc errno), a kolejka
komunikatow nie ulega zmianie.

Int mg_timedreceive(mqgd_t mqdes, char *msg_ptr, size_t msg_len,
unsigned *msg_prio_p, const struct timespec *abs_timeout);

Funkcja pobiera wiadomos¢ tak jak mq_receive(), oczekujgc najdtuzej do
momentu okreslonego w strukturze wskazywanej przez abs_timeout. (czas
odmierzany przez zegar CLOCK_REALTIME).

Uwaaqi:

® Obydwie funkcje mogg zosta¢ przerwane po obstuzeniu przez proces sygnatu.

® Jesli proces ustawi powiadomienie asynchroniczne i zablokuje sie na mqg_receive(), to
nowa wiadomosc¢ odblokuje mqg_receive() (ma pierwszenstwo).
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Testowanie statusu kolejki

Int mq_getattr(mqd_t mqdes, struct mq_attr *attr);

Pobiera do struktury wskazywanej przez attr atrybuty kolejki skojarzonej z
deskryptorem mqgdes

iInt mg_setattr( mgd_t mgdes, struct mq_attr *newattr,
struct mq_attr *oldattr );

Ustawia atrybuty kolejki skojarzonej z deskryptorem mqdes.

newattr wskazuje na strukture z nowymi atrybutami, a oldattr (jesli nie
NULL) — wskazuje na strukture, w ktorej funkcja umieszcza poprzednie
atrybuty.

Uwaga: funkcja mq_setattr moze zmienic jedynie atrybut mqg_flags (0 albo
O_NONBLOCK).
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Fragmenty przyktadu

Nadawca

Odbiorca

char buf[25], *mg_name=...;
mqd_t mqgdes;
struct mqg_attr attr;
attr.mg_maxmsg=1;//one msg only
attr.mqg_msgsize=sizeof(buf);
mgdes=mqg_open(mg_name,
O_RDWR | O_CREAT, FILE_MODE,
&attr);
if(mgdes==(mqd_t)-1){/* wyjscie z btedem?*/ }
while(fgets(buf,sizeof(buf),stdin)){
char *ptr;
int pri=msgnr%3;
ptr=strchr(buf,\n");

if(ptr) *ptr="0";
else buf[sizeof(buf)-11=%6%
if(mg_send{mqdes,buf,strlen(buf)+1,pri)

<0) break;
msgnr++;

}

mq_close(mqdes);

int main(int argc, char *argv[]){
char buf[25], *mg_name=...;
unsigned int pri, timeout=...;
mqd_t mqdes;
struct mq_attr attr;
If((mgdes=mq_open(mqg_name,

O_RDONLY,NULL))==(mqd_t)-1)

{/* btad */}

if(mqg_getattr(mqgdes,&attr)<0) {/* btad */}
if(attr.mg_msgsize>sizeof(buf)){ exit(1); }

while(1) {
);nq_receive(ques,buf,sizeof(buf),
&pri)<0) break;
buf[sizeof(buf)-1]="0;
puts(buf);
}

mq_close(mqdes);
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Asynchroniczne powiadomienie
iInt mg_notify(mgd_mqgdes, struct sigevent *notification);

Funkcja umozliwia dla kazdej kolejki POSIX rejestracje pojedynczeqo
powiadomienia o asynchronicznym zdarzeniu, polegajgcym na pojawieniu sie
komunikatu w pustej kolejce. Dla danej kolejki moze by¢ powiadamiany
(jednokrotnie) tylko jeden proces. W reakcji na zdarzenie mozna zamowic:

" doreczenie wskazanego sygnatu do procesu odbiorcy (SIGEV_SIGNAL)

" uruchomienie watku ze wskazang funkcjg roboczg i argumentem wywotania
(SIGEV_THREAD )

" pbrak powiadamiania (SIGEV_NONE)

Jezeli notification==NULL —>proces odwotuje powiadomienie (jesli je wczesniej zamowit)

struct sigevent {
int sigev_notify; /* Metoda: SIGEV_NONE, SIGEV_SIGNAL, SIGEV_THREAD */
int sigev_signo; [* Sygnat powiadomienia (dla SIGEV_SIGNAL) */
union sigval sigev_value; /* Dane przekazane z powiadomieniem */

void (*sigev_notify function) (union sigval); /* Funkcja robocza watku (dla metody
SIGEV_THREAD) */

void *sigev_notify attributes; /* Atrybuty funkcji roboczej watku powiadamiania */
};
union sigval { [* Dane przekazane z powiadomieniem */

int  sival_int;

void *sival_ptr;
3
Uwaga: po doreczenia powiadomienia do procesu rejestracja jest usuwana
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Przykiad wykorzystania powiadomienia —
doreczenie sygnatu SIGUSR1

void handler(int sig, siginfo_t *s, void *p){/* Uwaga: obstuga sygnatow RT */
signr=sig; p
}

static struct sigaction siga,

nr=s->si_pid; return;

static struct sigevent not;

mqgdes =mqg_open(mg_name,O_RDONLY,N

if (mgdes==(mqd_t)-1){/* obstuga btedu */}

siga.sa_flags=SA SIGINFO; siga.sa_sigaction=handler;
- 7

if(sigaction(SIGUSR1,&siga,NULL)<0){/* obstuga btedu */}

not. S|gev notify=SIGEV_SIGNAL,; /* Powiadomienie sygnatem */

igno=SIGUSR1; /* Wybor numeru sygnatu powiadomienia */
if(mqg_notify(mqgdes, &not)<0){/* btad */ }/* Rejestracja powiadomienia */
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Przykiad powiadomienia przez
rozpoczecie nowego watku

int main(int argc, char *argv([]) {
mgd t mgdes;
struct sigevent not;

if (argc!= 2){ /* bitad wywotania, brak nazwy kolejki */}

mgdes = mg open (argv[1l], O RDONLY) ;
if (mgdes == (mgd t) -1) {/* btad */}

( not.sigev notify = SIGEV THREAD;/* Powiadamianie watkiem */
not.sigev notify function = tfunc; /* F. robocza watku */

.slgev notify attributes = NULL;

not.si value.sival ptr = &mqdes; /* Arg. f. roboczej*/

if (mq notify(mqgdes, &not) == -1) {/* btad */}
pause (); /* Proces bedzie zakonczony w f. roboczej watku */
return EXIT SUCCESS;
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C.d. przykitadu

static void tfunc(union sigval sv) {/* Funkcja robocza watku
powiadamiania */
struct mg attr attr;
ssize t nr;
volid *buf;
mgd t mgdes = *((mgd t *) sv.sival ptr); /* Deskryptor

kolejki */
/* Pobranie maks. diugo$ci wiadomosci */
if (mg getattr (mgdes, s&attr) == -1) {/* bitad */ }

/* Alokacija bufora wiadomos$ci */
buf = malloc(attr.mg msgsize);
if (buf == NULL) {/* biad */}
/* Wczytanie wiadomos$ci (pierwszej w kolejce) */
nr = mq receive (mgdes, buf, attr.mg msgsize, NULL);
if (nr == -1) {/* btad */}
printf (,Wczytano %$1d B z kolejki\n”, (long) nr);
free (buf);/* Zwolnienie bufora */
exit (EXIT SUCCESS) ; /* Zakonczenie procesu */
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Odwzorowanie plikow w pamieci

ldea odwzorowania (czesci) pliku w przestrzen adresowg procesu

: |
plik p en .
0 off

int fd=open(,plik”,0_RDWR);
char *ptr=mmap(0, len, PROT_READ|PROT_WRITE,
ptr MAP_SHARED, fd, off);

przestrzen adresowa

procesu
ptr[O] jest odniesieniem do bajtu pliku numer off
ptr[len-1] jest odniesieniem do ostatniego odwzorowanego bajtu pliku

0 numerze off+len-1
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Odwzorowanie plikow w pamieci — c.d.

void * mmap (void *addr, size t len, int protect, int flags, int fd, off t off) —
funkcja tworzy odwzorowanie len bajtéw pliku zwigzanego z deskryptorem fd,
poczgwszy od bajtu nr off, z obszarem pamieci, do ktérego wskaznik zwraca
mmap. Parametr addr, podpowiadajgcy mmap lokalizacje uzytego fragmentu
przestrzeni adresowej, zwykle przybiera wartos¢ 0 (tzn. wybiera mmap)

Znaczenie parametru protect:
" MAP_PRIVATE — modyfikacja w pamieci nie jest zapisywana do pliku

" MAP_SHARED - zapis do odwzorowanego obszaru w pamieci spowoduje zapis
do odwzorowanego pliku

protect zawiera tez bity praw dostepu: PROT_READ, PROT_WRITE, PROT_EXEC

Int msync (void *addr, size t len, int flags) — wymusza zapis zawartosci
obszaru pamieci (len bajtéw, poczgwszy od addresu addr) odwzorowanego w
trybie MAP_SHARED do odwzorowanego pliku. Znaczenie parametru flags:

" MS SYNC - funkcja czeka, az dane zostang zapisane

" MS_ASYNC - funkcja inicjuje zapis, ale nie czeka na zakonczenie

Int munmap (void *addr, size_t len) —usuwa wszystkie odwzorowania adreséw
pamieci, od addr do addre+len-1
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Pamiec¢ wspoilna POSIX IPC

int shm open(const char *name, int oflag,
mode t mode) ;

Tworzy nowy segment pamieci i/lub ustanawia potgczenie miedzy segmentem a
deskryptorem pliku; zwraca deskryptor reprezentujgcy otwarty segment (-1 przy
niepowodzeniu). Wymagania na nazwe (name) — jak dla kolejki komunikatow.

Flagi oflag:
® 0 - ustanawia potgczenie
" O CREAT - tworzy nowy segment i ustanawia potgczenie

" O EXCL| O_CREAT - tworzy nowy segment i ustanawia potgczenie lub zwraca
btad, jesli segment istnieje

Uwaaqi:
" Tworzenie nowego segmentu pamieci wymaga podania bitdw ochrony pliku: mode

" W SO Linux obiekty pamieci wspolnej POSIX tworzone sg w wirtualnym systemie
plikow, ktory mozna domontowac np. do katalogu /dev/shm

" Dokumentacja segmentu pamieci wspolnej: shm_overview(7)
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Pamiec¢ wspoilna POSIX IPC

Po otwarciu segmentu nalezy:

" okresli¢ rozmiar segmentu (tak jak rozmiar pliku) za pomocg funkcji:

int ftruncate(int fildes, off t length);

Uwaga: bezposrednio po utworzeniu segment ma rozmiar 0

" odwzorowac segment na przestrzen adresowg procesu/watku (tak jak
zwykty plik) za pomocg funkcji mmap()z flaga MAP_SHARED

® Kkorzysta¢ z odwzorowania tak, jak w przypadku zwyktego adresu

" po zakonczeniu usung¢ odwzorowanie za pomocg funkcji munmap()
" funkcja

int shm unlink(const char *name);

Usuwa wskazang nazwe (name) segmentu pamieci dzielonej
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Pamiec¢ wspolna POSIX IPC - c.d.

Inne funkcje systemowe, ktére dotyczg pamieci wspolnej POSIX IPC:

" close() — umozliwia zamkniecie deskryptora utworzonego przez
shm_open(), gdy nie jest juz potrzebny.

" fstat() — wypetnia strukture typu stat informacjami o pamieci wspolnej, w
tym:

= St size - rozmiar,
= st mode — prawa dostepu
= st uid, st_gid =UID i GID wtasciciela

" fchown() — umozliwia zmiane wtasciciela

" fchmod() — umozliwia zmiane praw dostepu
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Przyktad uzycia pamieci wspolnej

#define SHM NAME ” /shm tool” // segment name
#define SHM LEN 100 // segment size

int shm fd; /* shm id */

char *segptr; /* mapped adres of the start of shm segment */
if(( = shm open (SHM NAME,O CREAT|O EXCL|O RDWR,0666)) == -1) {
if (errno!=EEXIST) {/* error handling */ ...}
else {
printf ("Shared memory segment exists\n");
1f(( = shm open (SHM NAME, O RDWR, 0666)) == -1) {
/* error handling */
}
}
} else {
printf (,,New shared memory segment created\n");
if (ftruncate ( ,SHM LEN)==-1){ /* error handling */ ...}
}
if ((segptr = (char *)mmap (NULL, SHM_LEN, PROT_READI PROT_WRITE,
MAP_SHARED, ,0)) == (char *)-1){
/* error handling */
}
/* segptr[0],..., segptr[SHM LEN-1] can be used to access shm segment

* as if it was a memory buffer of length SHM LEN
*/
munmap (segptr , SHM LEN ); /* invalidate shm mapping when not

needed */

Slajdy do wyktadu ,Systemy operacyjne 2”



Mechanizmy IPC Systemu V

Kolejki Pamieé Semafory
komunikatéw wspolna

Plik nagtéwkowy <sys/msg.h> <sys/shm.h> <sys/sem.h>

Tworzenie/ otwieranie  msgget() shmget() semget()

Operacje sterujgce msgctl() shmctl() semctl()

Operacje komunikacji  msgsnd() shmat() semop()
msgrcv() shmdt()

" Trwatosc¢ obiektow IPC Systemu V to tzw. trwatosc¢ jadra (kernel persistence) —
obiekty istniejg do przetadowania systemu lub do jawnego usuniecia

®" Przestrzen nazw:
= QObiekty sg globalne (jedna przestrzen nazw dla wszystkich procesow)

= Klucz typu key t (liczba catkowita dodatnia) identyfikuje obiekt w systemie.
Zalecany sposob generaciji:
key t ftok(const char *pathname, int id);

= Po otwarciu obiekt jest dostepny przez identyfikator obiektu IPC Systemu V;
identyfikator jest unikalny w ramach jednego mechanizmu IPC
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IPC Systemu V — polecenia systemowe

Wyswietlanie wtasnosci obiektow IPC Systemu V aktualnie dostepnych

ipcs [ -asmq | [ -clupt ] % informacja o obiektach wskazanego typu
ipcs [ -smq ] -i id % informacja o obiekcie o wskazanym identyfikatorze
Mozna rowniez uzywac interfejsu systemu plikdw (man namespaces(7)):

/proc/sysvipc/msg, /proc/sysvipc/sem, /proc/sysvipc/shm

Usuwanie obiektow IPC Systemu V aktualnie dostepnych (w wypadku
segmentow pamieci usuwanie jest odroczone — do czasu odtgczenia
wszystkich procesow-uzytkownikow) wymaga podania identyfikator id albo

klucza key:

ipcrm {msg | sem | shm } id % usuwanie obiektu zadanego typu
ipcrm [ -g|-s|-m] id % j.w.
ipcrm [-Q | -S| -M] key % j.w.
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Prawa dostepu do obiektow IPC

Dla kazdego obiektu IPC jgdro systemu przechowuje strukture (patrz
<sys/ipc.h>, svipc(7) ) opisujgcg prawa dostepu:

struct ipc perm {
uid t uid; /* UID uzytkownika - witasciciela */
gid t gid; /* GID uzytkownika - wtasciciela */
uid t cuid; /* UID uzytkownika - twdrcy obiektu */
gid t cgid; /* GID uzytkownika - twdrcy obiektu */
mode t mode; /* tryby dostepu (RWXRWXRWX) */
ulong t seq; /* (SVR4) numer kolejny, zwiekszany o 1
przy kazdym usunieciu obiektu
o danym kluczu */
key t key; /* klucz */
};
Sprawdzenia praw dostepu dokonuje sie przy kazdej operacji na obiekcie IPC.
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Tworzenie i otwieranie obiektow IPC

Do tworzenia i otwierania dostepu do obiektéw IPC Systemu V stuzy
wywotanie o postaci:

int XXXget(key t key, /* sz, */ int oflag)

XXX jest zastepowane przez

msg - dla kolejki komunikatow

shm - dla pamieci wspolnej (wowczas potrzebny jest parametr size t sz)
sem - dla semaforow (wowczas potrzebny jest parametr int sz)

oflag jest kombinacjg wartosci okreslajgcych prawa dostepu (RW-RW-RW-)
oraz IPC_CREAT iew. IPC_EXCL

Funkcja zwraca catkowitoliczbowy identyfikator obiektu, ktory jest
wykorzystywany przez proces do realizacji operacji na obiekcie. Identyfikator
jest unikalny w ramach kazdego typu obiektu IPC.

Uwaga: podanie w argumencie key statej IPC_PRIVATE daje gwarancje, ze
jest tworzony nowy, unikatowy obiekt IPC. Nie istnieje zadna kombinacja
pathname i id w wywotaniu ftok(), ktéra tworzy klucz o wartosci
IPC_PRIVATE
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Tworzenie i otwieranie obiektow IPC - c.d

Sposoby tworzenia/otwierania dostepu do obiektéw IPC Systemu V.

Argument oflag

Obiekt o podanym
kluczu nie istnieje

Obiekt o podanym
Kluczu istnieje

Brak sygnalizatorow

Btad, errno==ENOENT

w porzadku, wskazanie
istniejgcego obiektu

IPC_CREAT

IPC_EXCL

IPC_CREAT w porzgdku, utworzenie | w porzadku, wskazanie
nowego wpisu istniejgcego obiektu

IPC_CREAT | w porzgdku, utworzenie | btad, errno==EEXIST

IPC_EXCL nowego wpisu
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Kolejki komunikatow IPC Systemu V

® Komunikaty majg postac struktury:
struct msgbuf
long mtype; /* typ komunikatu, musi by¢& >0 */
char mtext[l]; /* dane komunikatu, diugosé >=0 (tu:1l)*/

}

Maksymalna dtugos¢ komunikatu (MSGMAX) i maksymalna liczba kolejek komunikatow w
systemie (MSGMNI) sg konfigurowalna na poziomie systemu.

® Kolejka jest identyfikowana przez identyfikator kolejki, zmienng typu int.

" Kolejka ma okreslong, w czasie tworzenia, dtugos¢ (maksymalna wartosc
MSGMNB konfigurowalna na poziomie systemu). Gdy zostanie ona przekroczona,
proces piszgcy do kolejki bedzie zablokowany (przy pracy w domysinym trybie:
blokujgcym).

® Komunikaty odczytywane z kolejki zachowujg strukture, chociaz w kolejce mogg
znajdowac sie komunikaty o réznej dtugosci.

® Operacja odczytu z pustej kolejki blokuje odbiorce (watek), jesli dostep jest w trybie
z blokowaniem.

Uwaga: Wartosci (MSGMAX, MSGMNI, MSGMNB) sg dostepne przez interfejs
systemu plikbw (msgmax, msgmnb, msgmni w /proc/kernel)
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Wysytanie komunikatow

int msgsnd( int msqid, struct msgbuf *ptr,
size t len, int flag);

Funkcja wstawia komunikat o dtugosci len wskazywany przez ptr do kolejki
o identyfikatorze msqid, zwracajgc normalnie 0 (bgdz —1 w przypadku
niepowodzenia, errno okresla przyczyne).

flag o wartosci 0 => funkcja blokuje, jesli brak miejsca na komunikat

flag o wartosci IPC_NOWAIT => funkcja powraca z btedem
(errno==EAGAIN), jesli brakuje miejsca na komunikat w kolejce.

Uwagis:
" funkcja msgsnd nie interpretuje pola mtext struktury msgbuf

" len okresla rozmiar danych, t.j. sizeof(msgbuf)=sizeof(long); len moze
by¢ rowne 0 (struktura komunikatu zawiera tylko typ).

" pole mtype struktury msgbuf pozwala wigza¢ wiadomosci z tg samg
wartoscig mtype w liste (porzadek FIFO); system uktada tez inng liste:
wszystkich komunikatow danej kolejki, uporzgdkowang wg kolejnosci
wstawienia do kolejki
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Odbior komunikatow

int msgrcv(int msqgid, struct msgbuf *ptr,
size t len, long type, int flag);

Funkcja odczytuje komunikat o maksymalnej dtugosci len do struktury
wskazywane] przez ptr z kolejki o identyfikatorze msqid, zwracajac
normalnie 0 (bgdz —1 w przypadku niepowodzenia, errno okresla
przyczyne). Domysinie funkcja blokuje, jesli nie ma zgdanej wiadomosci.

type o wartosci 0 => funkcja odczytuje najstarszy komunikat

type >0 => funkcja odczytuje najstarszy komunikat podanego typu (usuwajgc
go z kolejki), jesli jednoczesnie (flag & MSG _EXCEPT) to pobierany jest
najstarszy komunikat typu réznego od type

type<0 => funkcja odczytuje najstarszy komunikat typu <= |type]
flag o wartosci 0 => funkcja blokuje, jesli brak zgdanego komunikatu

(flag & IPC_NOWAIT)!=0 => funkcja powraca z btedem (ENOMSG), jesli
aktualnie nie ma odpowiedniego komunikatu w kolejce

(flag & MSG_NOERROR)!=0 => funkcja obcina komunikat, ktory jest za dtugi
(domyslinie zwracany jest btgd E2BIG).
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Operacje sterujace kolejka komunikatow

int msgctl (int msqid, int cmd, struct msqid ds *buf);
Dostepne polecenia (cmd) dla kolejki o danym identyfikatorze (msqid):
IPC_RMID — usuwa z systemu kolejke komunikatéw (z wiadomosciami)

IPC_SET — ustawia nowe parametry kolejki, korzystajgc z czterech pdl struktury msqgid_ds:
msg_perm.uid, msg_perm.gid, msg_perm.mode, msg_gbytes, aktualizujgc tez
automatycznie pole msg_ctime

Polecenia te moze wykonac tylko proces z EUID rownym 0, msg_perm.cuid,msg_perm.uid
IPC_STAT — przekazuje do struktury wskazanej przez buf aktualne wartosci parametréw kolejki

struct msqgid ds =zawiera m.in. nastepujace pola:

struct ipc perm msg perm; /* prawa dostepu */
struct msg *msg first, *msg last; /* wskazniki listy komunikatéw */

msglen t msg cbytes; /* biezaca liczba bajtéw w kolejce */
msggnum_t msg_qgnum; /* biezaca liczba komunikatéw w kolejce */
msglen t msg gbytes; /* maks. dozwolona liczba bajtdéw w kolejce */

pid t msg lspid, msg lrpid; /* PID procesu ostatnio wywoiujacego
msgsnd () ,msgrcv () */
time_t msg stime, msg _rtime, msg ctime; /* czas ostatniego
wywotania msgsnd (), msgrcv (), msgctl () */
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Fragmenty przykiadu (msend1/mrecv1)

Nadawca (msendl.c)

Odbiorca (mrecvl.c)

int queue, 1i; packet pl;
if ( (queue = msgget (QUEKEY,
IPC CREAT| S IRUSR| S IWUSR|
S IRGRP|S IWGRP))<0) {
/* error */
}
pl.mtype=1;
for(i = 0 ; 1 < 10; 1i++){
snprintf (pl.mtext, TXTSZ,
"Packet %d\n”,1i)
if(TEMP_FAILURE_RETRY(
msgsnd (queue , &pl, TXTSZ,
0))<0) {
/* error */
}
sleep(1l);
y/* for () */
sleep(5);/* wait for reader */
if (msgctl (queue ,IPC RMID,NULL)<0) {
/* error handling */

b

int queue; packet pl;
if ((queue = msgget (QUEKEY,
IPC CREAT|S IRUSR|S IWUSR]
S IRGRP|S IWGRP))<0) {
/* error */
}
for (;;){
if(TEMP_FAILURE_RETRY(
msgrcv (queue , & pl, TXTSZ,
1,0))<0)
break;
printf ("%s", pl.mtext);
}

if (errno)

perror ("mrecvl error");
#define QUEKEY O0x00FFO0O0

#define TXTSZ 80

typedef struct {

long mtype;

char mtext [TXTSZ];

} packet;
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Pamie¢ wspoélna IPC Systemu V
int shmget(key t key, size t len, int oflag);

Tworzy nowy/otwiera istniejgcy segment pamieci wspolnej o rozmiarze len i kluczu
key. oflag jest alternatywg bitowg praw dostepu i ew. IPC_CREAT, IPC_EXCL.
Tworzony segment jest wypetniany zerami. W przypadku powodzenia funkcja
zwraca identyfikator segmentu; przy niepowodzeniu —1.

void * shmat (int shmid, const void *addr, int flagqg)

Dotgcza segment pamieci wspolnej o identyfikatorze shmid , zwracajgc wskaznik do
poczagtku segmentu albo -1 — przy niepowodzeniu.

addr == 0 => adres segmentu wybierany jest przez jgdro

addr '= 0 => adres pod ktérym system ma dotgczy¢ segment; jesli przy tym  (flag
& SHM RND) =0 => adres jest zaokrgglany do wielokrotnosci rozmiaru strony
pamieci wirtualne.

Segment jest dotaczany w trybie tylko do odczytu, gdy (flag&SHM_ RDONLY)!=0,
domyslnie — w trybie odczytu i zapisu.

int shmdt (const void *shmaddr) ;

Odtgcza segment wskazywany przez shmaddr. Segment nie jest usuwany, chyba ze
zaznaczono segment do usuniecia (shmctl) i nie ma wiecej dotgczen do segmentu
w systemie).
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Operacje na pamieci wspolnej

int shmctl (int shmid, int cmd, struct shmid ds *buf) ;

Dostepne polecenia (cmd) dla segmentu o danym identyfikatorze (shmid):

IPC_RMID — zaznacza segment do usuniecia (usuniecie odbedzie sie po
odtgczeniu wszystkich procesow od segmentu, badz przy zamknieciu
systemu). Segment moze usungc¢ proces o EUID==0, przez twérce albo
wiasciciela — okreslonych przez pola shm_perm.cuid i shm_perm.uid w
strukturze informacyjnej shmid_ds segmentu.

IPC_SET — ustawia w strukturze informacyjnej shmid_ds segmentu wartosci pol
shm_perm.uid, shm_perm.gid, shm_perm.mode na wartosci pobrane z
bufora wskazywanego przez buf

Polecenia te moze wykonac tylko proces z EUID réwnym O, shm_perm.cuid,
shm_perm.uid (patrz struct shmid_ds)

IPC_STAT — zapisuje zawartos¢ struktury shmid _ds segmentu do bufora
wskazywanego przez buf
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Struktura opisujgca segment pamieci

struct shmid ds. {
struct ipc perm shm perm; /* struct praw dostepu */
size t shm segsz; /* rozmiar segmentu w bajtach */
pid tshm lpid; /* PID procesu ostatniej operacji */
pid tshm cpid; /* PID procesu twoércy */
shmat t shm nattch; /* aktualna liczba dotaczen */
time t shm atime; /* czas ostatniego dotaczenia */
time t shm dtime; /* czas ostatniego odiaczenia */
time t shm ctime; /* czas ostatniej zmiany shmid ds

funkcja shmctl */
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Pamiec¢ wspolna — prosty schemat uzycia

key t key; int shmid; char “*segptr; /* deklaracja zmiennych */

key = ftok(".", ‘A'); /* pozyskanie klucza */

1f ((shmid = shmget (key , SEGSIZE, IPC CREAT|IPC EXCL|0666)) == -1){
1f (errno==EEXIST) {

printf ("Segment pamieci istnieje\n");

if ((shmid = shmget (key , SEGSIZE, 0)) == -1){/* btad */
} else {/* btad */ ... }
} else {

/* Tu mozna wykona¢ inicjalizacje segmentu (domy$lnie zerowany) */
}
/* Dolaczenie segmentu pamieci wspdlnej do procesu */
if (( = (char *)shmat(shmid , 0, 0)) == (char *)-1) {
/* Btad dotaczenia segmentu */
} else printf (”Segment dotaczony\n”);
/* Uzytkowanie segmentu, t.Jj. odniesienia do
(0], ... [SEGSIZE-1]
*/
shmdt ( ); /* Oditaczenie segmentu po wykorzystaniu */
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Efekty wywotania funkcji systemowych

Sys.V msg bez wptywu bez wptywu bez wptywu

POSIX MQ potomek dziedziczy deskryptory sg deskryptory sa

kopie otwartych deskr. zamykane zamykane
Sys V shm przydzielone segmenty segmenty sg segmenty sg
shm sg dotgczane do  odigczane odtgczane

procesu potomnego

POSIX shm potomek zachowuje odwzorowanie jest odwzorowanie jest
odwzorowanie w usuwane usuwane
pamieci
Odwz. Potomek zachowuje odwzorowanie jest odwzorowanie jest
Pamieci odwzorowanie w usuwane usuwane

przez mmap() pamieci
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