IPC -cz. 1
Kolejki komunikatow
| pamiec wspolna

Ostatnia modyfikacja: 03.03.2020

POSIX IPC

Kolejki Pamiec Semafory
komunikatéw | wspélna

Plik nagtéwkowy <mgueue.h> <sys/mman.h> <semaphore.h>
Tworzenie/ mq_open(), shm_open(), sem_open()
otwieranie/usuwanie mq_close(), shm_unlink() sem_close(),
mq_unlink() sem_unlink(),
sem_init(),
sem_destroy()
Operacje sterujgce mq_getattr(), ftruncate(),
mq_setattr() fstat()
Operacje komunikacji mq_send() mmap() sem_wait(),
mq_receive(), munmap() sem_trywait(),
mq_notify() sem_post(),

sem_getvalue()

" Trwatosc¢ obiektéw POSIX IPC to tzw. trwatos¢ jadra za wyjatkiem semafora w
pamieci, ktéry ma trwatos¢ procesu (process persistence) — obiekt istnieje tak
dtugo, az ostatni proces z niego korzystajgcy dokona zamkniecia obiektu.

Slajdy do wyktadu ,Systemy operacyjne 2”

POSIX - kolejki komunikatow

O
®

n
@ mg_maxmsg ¢ >
< >

Schemat komunikacji proceséw za pomocg kolejki komunikatow

Podstawowe cechy kolejek komunikatow:

" |stnieje mozliwosc¢ wskazania tej samej kolejki przez niezwigzane procesy.
Kolejka komunikatow moze by¢ widoczna w systemie plikdw (Linux), ale nie musi

" Przekazywanie komunikatow (o dtugosci 0 do mq_msgsize) jest niezawodne.
Kolejka ma trwatos¢ w ramach systemu, tzn. istnieje do restartu systemu lub do
jawnego usuniecia.

" W procesie kolejka jest identyfikowana przez deskryptor kolejki, zmienng typu
mqd_t.. Deskryptor kolejki moze by¢ implementowany jako deskryptor pliku.

® Kolejka ma skonczong pojemnos¢ (mg_maxmsg komunikatow)
" Dostep do funkcji realizujgcych kolejke wymaga uzycia biblioteki rt.
Slajdy do wyktadu ,Systemy operacyjne 2”

POSIX - kolejki komunikatow

Komunikaty majg dtugos¢ maksymalng (mqg_msgsize) okreslong w czasie
tworzenia kolejki. Operacje odczytu muszg by¢ zawsze przygotowane na odbior
komunikatu o0 maksymalnej dtugosci.

Kolejka ma okreslong, w czasie tworzenia, dtugos¢ (mqg_maxmsg). Gdy
zostanie ona przekroczona - proces piszgcy do kolejki bedzie zablokowany
(przy pracy w domysinym trybie: blokujacym) - az bedzie dostatecznie duzo
miejsca wolnego w kolejce, bgdz do przerwania sygnatem.

Komunikaty odczytywane z kolejki zachowujg strukture, chociaz w kolejce
mogg znajdowac sie komunikaty o roznej dtugosci.

Komunikatom mozna nadac priorytet (liczba catkowita bez znaku, mniejsza od
state) MQ_PRIO_MAX>=32, do pobrania przez sysconf()). Komunikaty o
najwyzszym priorytecie sg umieszczane na poczgtku kolejki (w porzadku FIFO).

Operacja odczytu z pustej kolejki blokuje odbiorce (watek), jesli dostep jest w
trybie z blokowaniem.

Implementacja definiuje MQ _OPEN_MAX (>=8) — maksymalng liczbe kolejek,
ktore w danej chwili mogg byC otwarte przez jeden proces.

Istnieje interfejs plikowy do parametrow kolejki (man namespaces(7)): patrz
/proc/sys/fs/imqueue.

Slajdy do wyktadu ,Systemy operacyjne 2”

Podstawowe typy i plik nagiowkowy

" Podstawowe typy danych i prototypy funkcji sg w pliku nagtdwkowym:
<mqueue.h>

" Atrybuty kolejki przekazywane sg w strukturze:

struct mg attr ({
long mg flags; /* 0 albo O NONBLOCK */
long mg maxmsg; /* Maks. liczba wiadomosci w kolejce*/
long mg msgsize; /* Maks. diugos$¢ wiadomosci (B) */
long mg curmsgs; /* Aktualna liczba komunikatdw
w kolejce */

b

Slajdy do wyktadu ,Systemy operacyjne 2”

Tworzenie kolejki/otwieranie dostepu

mad t mg open (const char *name, int oflag
/* , mode t mode, struct mg attr *attr */);

Funkcja mqg_open zwraca identyfikator kolejki, albo (mqgd_t)(-1) , ustawiajgc kod
btedu w zmiennej globalnej errno.

Parametry wywotania:

name — tancuch identyfikujgcy kolejke komunikatéw.

oflag - tryb tworzenia kolejki, jak dla plikdow (O_RDONLY, O WRONLY, O RDWR,
O_CREAT, O_EXCL, O _NONBLOCK)

mode - prawa dostepu do tworzonej kolejki (r i w - jak dla plikow)

attr - wsk. do struktury atrybutéw kolejki (pola: mg_maxmsg, mg_msgsize)
Uwaaqi:

* wykonanie funkcji moze zosta¢ przerwane (kod wyjscia —1, errno==EINTR), wskutek
obstugi sygnatu przez proces wywotujgcy mqg_open()

W SO Linux kolejki tworzone sg w wirtualnym systemie plikdw, ktéry mozna domontowac
np. do katalogu /dev/Imqgueue. Informacje o kolejkach sg dostepne w poddrzewie
systemu plikow: /proc/sys/fs/mqueue/

Slajdy do wyktadu ,Systemy operacyjne 2”

POSIX MQ — przestrzen nazw i
identyfikatorow

® Parametr name wskazuje na napis (C-string) bedacy nazwg kolejki komunikatow
POSIX.

= POSIX nie wymaga, by nazwa byta widoczna w systemie plikow czy byta
dostepna dla funkcji systemowych korzystajgcych z nazw sciezkowych.

= Parametr name musi spetnia¢ wymagania nazwy sciezkowej (pathname).

- Jesli name rozpoczyna znak ,/’, to kazdy proces wywotujgcy mq_open()
z takg nazwg wskazuje na tg samg kolejke komunikatow — poki nie
zostanie usunieta z systemu.

- Jesli name nie rozpoczyna znak ,/’ — konsekwencje zalezg od
implementacii.

- Konsekwencje wielokrotnego wystgpienia w nazwie znaku ,/’ zalezg od
implementacji. W SO Linux name rozpoczyna znak ,/’; nie moze by¢
wiecej takich znakow w name.

® Deskryptor kolejki komunikatow POSIX moze by¢ implementowany za pomocg

deskryptora plikow. Wowczas proces moze jednoczesnie mie€ otwartych
{OPEN_MAX} plikdw i kolejek.

®" Dokumentacja kolejek w systemie Linux : mg_overview(7)

Slajdy do wyktadu ,Systemy operacyjne 2”

Zamykanie dostepu | kasowanie kolejki

" Gdy proces przestaje korzystac z kolejki powinien jg zamkng¢ za pomocg
int mq close(mgd t mq);

® Kolejke kasuje sie za pomoca:

int mq unlink(char *name);

Funkcja powoduje natychmiastowe usuniecie nazwy wskazanej kolejki z
systemu; sama kolejka jest usuwana z systemu wtedy, gdy wszystkie

procesy, ktore otwarty dostep do tej kolejki zamkng deskryptory kolejki (za
pomocg mqg_close) .

Slajdy do wyktadu ,Systemy operacyjne 2”

Wysytanie komunikatow

int t mq send(mgd t mgdes, const char *msg ptr,
size t msg len, unsigned msg prio);
wstawianie komunikatu (msg_ptr[0],...msg_ptr[msg_len-1]) do kolejki mgdes
int mqg timedsend(mgd t mgdes, const char *msg ptr,
size t msg len, unsigned msg prio,
const struct timespec *abs timeout) ;
wstawianie komunikatu do kolejki (z ograniczonym czekaﬁem)

Parametry wywotania:

mqgdes - identyfikator kolejki komunikatow

msg_ptr - adres bufora wysytanego komunikatu

msg_len - dtugos¢ wysytanego komunikatu

msg_prio - priorytet komunikatu (od 0 do MQ_PRIORITY_MAX)

abs_timeout - odlegtosc czasowa (od potnocy 1.1.1970r.) konca okresu czekania na

dostep do kolejki
struct timespec {
time_ttv_sec; [* sekundy */
long tv_nsec; [* nanosekundy */

Funkcje wysytajgce zwracajg 0 przy pomysinym wstawieniu komunikatu (mqg_timedsend() - w
zadanym przedziale czasu), albo —1 przy niepowodzeniu (errno zawiera kod btedu).

Jesli kilka watkow blokuje na mqg_send()/mqg_timedsend() z powodu petnej kolejki, to przy
zwolnieniu miejsca odblokowywany jest watek o najwyzszym priorytecie, czekajgcy najdtuzej.

Uwaga: obydwie funkcje mogg zostac przerwane po obstuzeniu przez proces sygnatu.

Slajdy do wyktadu ,Systemy operacyjne 2”

Odbior komunikatow

Int mg_receive(mqd_t mqdes, char *msg_ptr, size_t msg_len,
unsigned *msg_prio_p);

Funkcja pobiera z kolejki zwigzanej z deskryptorem mqgdes do bufora o dtugosci
msg_len, wskazywanego przez msg_ptr najstarszg wiadomos¢ o najwiekszym
priorytecie. Jesli msg_prio_p!=NULL, to wartos¢ *msg_prio_p staje sie rowna
priorytetowi pobranej wiadomosci.

Przy pomysinym wykonaniu funkcja zwraca dtugos¢ pobranej wiadomosci. W
przypadku niepowodzenia funkcja zwraca —1 (ustawiajgc errno), a kolejka
komunikatow nie ulega zmianie.

Int mg_timedreceive(mqgd_t mqdes, char *msg_ptr, size_t msg_len,
unsigned *msg_prio_p, const struct timespec *abs_timeout);

Funkcja pobiera wiadomos¢ tak jak mq_receive(), oczekujgc najdtuzej do
momentu okreslonego w strukturze wskazywanej przez abs_timeout. (czas
odmierzany przez zegar CLOCK_REALTIME).

Uwaaqi:

® Obydwie funkcje mogg zosta¢ przerwane po obstuzeniu przez proces sygnatu.

® Jesli proces ustawi powiadomienie asynchroniczne i zablokuje sie na mqg_receive(), to
nowa wiadomosc¢ odblokuje mqg_receive() (ma pierwszenstwo).
Slajdy do wyktadu ,Systemy operacyjne 2”

Testowanie statusu kolejki

Int mq_getattr(mqd_t mqdes, struct mq_attr *attr);

Pobiera do struktury wskazywanej przez attr atrybuty kolejki skojarzonej z
deskryptorem mqgdes

iInt mg_setattr(mgd_t mgdes, struct mq_attr *newattr,
struct mq_attr *oldattr);

Ustawia atrybuty kolejki skojarzonej z deskryptorem mqdes.

newattr wskazuje na strukture z nowymi atrybutami, a oldattr (jesli nie
NULL) — wskazuje na strukture, w ktorej funkcja umieszcza poprzednie
atrybuty.

Uwaga: funkcja mq_setattr moze zmienic jedynie atrybut mqg_flags (0 albo
O_NONBLOCK).

Slajdy do wyktadu ,Systemy operacyjne 2”

Fragmenty przyktadu

Nadawca

Odbiorca

char buf[25], *mg_name=...;
mqd_t mqgdes;
struct mqg_attr attr;
attr.mg_maxmsg=1;//one msg only
attr.mqg_msgsize=sizeof(buf);
mgdes=mqg_open(mg_name,
O_RDWR | O_CREAT, FILE_MODE,
&attr);
if(mgdes==(mqd_t)-1){/* wyjscie z btedem?*/ }
while(fgets(buf,sizeof(buf),stdin)){
char *ptr;
int pri=msgnr%3;
ptr=strchr(buf,\n");

if(ptr) *ptr="0";
else buf[sizeof(buf)-11=%6%
if(mg_send{mqdes,buf,strlen(buf)+1,pri)

<0) break;
msgnr++;

}

mq_close(mqdes);

int main(int argc, char *argv[]){
char buf[25], *mg_name=...;
unsigned int pri, timeout=...;
mqd_t mqdes;
struct mq_attr attr;
If((mgdes=mq_open(mqg_name,

O_RDONLY,NULL))==(mqd_t)-1)

{/* btad */}

if(mqg_getattr(mqgdes,&attr)<0) {/* btad */}
if(attr.mg_msgsize>sizeof(buf)){ exit(1); }

while(1) {
);nq_receive(ques,buf,sizeof(buf),
&pri)<0) break;
buf[sizeof(buf)-1]="0;
puts(buf);
}

mq_close(mqdes);

Slajdy do wyktadu ,Systemy operacyjne 2”

Asynchroniczne powiadomienie
iInt mg_notify(mgd_mqgdes, struct sigevent *notification);

Funkcja umozliwia dla kazdej kolejki POSIX rejestracje pojedynczeqo
powiadomienia o asynchronicznym zdarzeniu, polegajgcym na pojawieniu sie
komunikatu w pustej kolejce. Dla danej kolejki moze by¢ powiadamiany
(jednokrotnie) tylko jeden proces. W reakcji na zdarzenie mozna zamowic:

" doreczenie wskazanego sygnatu do procesu odbiorcy (SIGEV_SIGNAL)

" uruchomienie watku ze wskazang funkcjg roboczg i argumentem wywotania
(SIGEV_THREAD)

" pbrak powiadamiania (SIGEV_NONE)

Jezeli notification==NULL —>proces odwotuje powiadomienie (jesli je wczesniej zamowit)

struct sigevent {
int sigev_notify; /* Metoda: SIGEV_NONE, SIGEV_SIGNAL, SIGEV_THREAD */
int sigev_signo; [* Sygnat powiadomienia (dla SIGEV_SIGNAL) */
union sigval sigev_value; /* Dane przekazane z powiadomieniem */

void (*sigev_notify function) (union sigval); /* Funkcja robocza watku (dla metody
SIGEV_THREAD) */

void *sigev_notify attributes; /* Atrybuty funkcji roboczej watku powiadamiania */
};
union sigval { [* Dane przekazane z powiadomieniem */

int sival_int;

void *sival_ptr;
3
Uwaga: po doreczenia powiadomienia do procesu rejestracja jest usuwana

Slajdy do wyktadu ,Systemy operacyjne 2”

Przykiad wykorzystania powiadomienia —
doreczenie sygnatu SIGUSR1

void handler(int sig, siginfo_t *s, void *p){/* Uwaga: obstuga sygnatow RT */
signr=sig; p
}

static struct sigaction siga,

nr=s->si_pid; return;

static struct sigevent not;

mqgdes =mqg_open(mg_name,O_RDONLY,N

if (mgdes==(mqd_t)-1){/* obstuga btedu */}

siga.sa_flags=SA SIGINFO; siga.sa_sigaction=handler;
- 7

if(sigaction(SIGUSR1,&siga,NULL)<0){/* obstuga btedu */}

not. S|gev notify=SIGEV_SIGNAL,; /* Powiadomienie sygnatem */

igno=SIGUSR1; /* Wybor numeru sygnatu powiadomienia */
if(mqg_notify(mqgdes, ¬)<0){/* btad */ }/* Rejestracja powiadomienia */

Slajdy do wyktadu ,Systemy operacyjne 2”

Przykiad powiadomienia przez
rozpoczecie nowego watku

int main(int argc, char *argv([]) {
mgd t mgdes;
struct sigevent not;

if (argc!= 2){ /* bitad wywotania, brak nazwy kolejki */}

mgdes = mg open (argv[1l], O RDONLY) ;
if (mgdes == (mgd t) -1) {/* btad */}

(not.sigev notify = SIGEV THREAD;/* Powiadamianie watkiem */
not.sigev notify function = tfunc; /* F. robocza watku */

.slgev notify attributes = NULL;

not.si value.sival ptr = &mqdes; /* Arg. f. roboczej*/

if (mq notify(mqgdes, ¬) == -1) {/* btad */}
pause (); /* Proces bedzie zakonczony w f. roboczej watku */
return EXIT SUCCESS;

Slajdy do wyktadu ,Systemy operacyjne 2”

C.d. przykitadu

static void tfunc(union sigval sv) {/* Funkcja robocza watku
powiadamiania */
struct mg attr attr;
ssize t nr;
volid *buf;
mgd t mgdes = *((mgd t *) sv.sival ptr); /* Deskryptor

kolejki */
/* Pobranie maks. diugo$ci wiadomosci */
if (mg getattr (mgdes, s&attr) == -1) {/* bitad */ }

/* Alokacija bufora wiadomos$ci */
buf = malloc(attr.mg msgsize);
if (buf == NULL) {/* biad */}
/* Wczytanie wiadomos$ci (pierwszej w kolejce) */
nr = mq receive (mgdes, buf, attr.mg msgsize, NULL);
if (nr == -1) {/* btad */}
printf (,Wczytano %$1d B z kolejki\n”, (long) nr);
free (buf);/* Zwolnienie bufora */
exit (EXIT SUCCESS) ; /* Zakonczenie procesu */

Slajdy do wyktadu ,Systemy operacyjne 2”

Odwzorowanie plikow w pamieci

ldea odwzorowania (czesci) pliku w przestrzen adresowg procesu

: |
plik p en .
0 off

int fd=open(,plik”,0_RDWR);
char *ptr=mmap(0, len, PROT_READ|PROT_WRITE,
ptr MAP_SHARED, fd, off);

przestrzen adresowa

procesu
ptr[O] jest odniesieniem do bajtu pliku numer off
ptr[len-1] jest odniesieniem do ostatniego odwzorowanego bajtu pliku

0 numerze off+len-1

Slajdy do wyktadu ,Systemy operacyjne 2”

Odwzorowanie plikow w pamieci — c.d.

void * mmap (void *addr, size t len, int protect, int flags, int fd, off t off) —
funkcja tworzy odwzorowanie len bajtéw pliku zwigzanego z deskryptorem fd,
poczgwszy od bajtu nr off, z obszarem pamieci, do ktérego wskaznik zwraca
mmap. Parametr addr, podpowiadajgcy mmap lokalizacje uzytego fragmentu
przestrzeni adresowej, zwykle przybiera wartos¢ 0 (tzn. wybiera mmap)

Znaczenie parametru protect:
" MAP_PRIVATE — modyfikacja w pamieci nie jest zapisywana do pliku

" MAP_SHARED - zapis do odwzorowanego obszaru w pamieci spowoduje zapis
do odwzorowanego pliku

protect zawiera tez bity praw dostepu: PROT_READ, PROT_WRITE, PROT_EXEC

Int msync (void *addr, size t len, int flags) — wymusza zapis zawartosci
obszaru pamieci (len bajtéw, poczgwszy od addresu addr) odwzorowanego w
trybie MAP_SHARED do odwzorowanego pliku. Znaczenie parametru flags:

" MS SYNC - funkcja czeka, az dane zostang zapisane

" MS_ASYNC - funkcja inicjuje zapis, ale nie czeka na zakonczenie

Int munmap (void *addr, size_t len) —usuwa wszystkie odwzorowania adreséw
pamieci, od addr do addre+len-1

Slajdy do wyktadu ,Systemy operacyjne 2”

Pamiec¢ wspoilna POSIX IPC

int shm open(const char *name, int oflag,
mode t mode) ;

Tworzy nowy segment pamieci i/lub ustanawia potgczenie miedzy segmentem a
deskryptorem pliku; zwraca deskryptor reprezentujgcy otwarty segment (-1 przy
niepowodzeniu). Wymagania na nazwe (name) — jak dla kolejki komunikatow.

Flagi oflag:
® 0 - ustanawia potgczenie
" O CREAT - tworzy nowy segment i ustanawia potgczenie

" O EXCL| O_CREAT - tworzy nowy segment i ustanawia potgczenie lub zwraca
btad, jesli segment istnieje

Uwaaqi:
" Tworzenie nowego segmentu pamieci wymaga podania bitdw ochrony pliku: mode

" W SO Linux obiekty pamieci wspolnej POSIX tworzone sg w wirtualnym systemie
plikow, ktory mozna domontowac np. do katalogu /dev/shm

" Dokumentacja segmentu pamieci wspolnej: shm_overview(7)

Slajdy do wyktadu ,Systemy operacyjne 2”

Pamiec¢ wspoilna POSIX IPC

Po otwarciu segmentu nalezy:

" okresli¢ rozmiar segmentu (tak jak rozmiar pliku) za pomocg funkcji:

int ftruncate(int fildes, off t length);

Uwaga: bezposrednio po utworzeniu segment ma rozmiar 0

" odwzorowac segment na przestrzen adresowg procesu/watku (tak jak
zwykty plik) za pomocg funkcji mmap()z flaga MAP_SHARED

® Kkorzysta¢ z odwzorowania tak, jak w przypadku zwyktego adresu

" po zakonczeniu usung¢ odwzorowanie za pomocg funkcji munmap()
" funkcja

int shm unlink(const char *name);

Usuwa wskazang nazwe (name) segmentu pamieci dzielonej

Slajdy do wyktadu ,Systemy operacyjne 2”

Pamiec¢ wspolna POSIX IPC - c.d.

Inne funkcje systemowe, ktére dotyczg pamieci wspolnej POSIX IPC:

" close() — umozliwia zamkniecie deskryptora utworzonego przez
shm_open(), gdy nie jest juz potrzebny.

" fstat() — wypetnia strukture typu stat informacjami o pamieci wspolnej, w
tym:

= St size - rozmiar,
= st mode — prawa dostepu
= st uid, st_gid =UID i GID wtasciciela

" fchown() — umozliwia zmiane wtasciciela

" fchmod() — umozliwia zmiane praw dostepu

Slajdy do wyktadu ,Systemy operacyjne 2”

Przyktad uzycia pamieci wspolnej

#define SHM NAME ” /shm tool” // segment name
#define SHM LEN 100 // segment size

int shm fd; /* shm id */

char *segptr; /* mapped adres of the start of shm segment */
if((= shm open (SHM NAME,O CREAT|O EXCL|O RDWR,0666)) == -1) {
if (errno!=EEXIST) {/* error handling */ ...}
else {
printf ("Shared memory segment exists\n");
1f((= shm open (SHM NAME, O RDWR, 0666)) == -1) {
/* error handling */
}
}
} else {
printf (,,New shared memory segment created\n");
if (ftruncate (,SHM LEN)==-1){ /* error handling */ ...}
}
if ((segptr = (char *)mmap (NULL, SHM_LEN, PROT_READI PROT_WRITE,
MAP_SHARED, ,0)) == (char *)-1){
/* error handling */
}
/* segptr[0],..., segptr[SHM LEN-1] can be used to access shm segment

* as if it was a memory buffer of length SHM LEN
*/
munmap (segptr , SHM LEN); /* invalidate shm mapping when not

needed */

Slajdy do wyktadu ,Systemy operacyjne 2”

Mechanizmy IPC Systemu V

Kolejki Pamieé Semafory
komunikatéw wspolna

Plik nagtéwkowy <sys/msg.h> <sys/shm.h> <sys/sem.h>

Tworzenie/ otwieranie msgget() shmget() semget()

Operacje sterujgce msgctl() shmctl() semctl()

Operacje komunikacji msgsnd() shmat() semop()
msgrcv() shmdt()

" Trwatosc¢ obiektow IPC Systemu V to tzw. trwatosc¢ jadra (kernel persistence) —
obiekty istniejg do przetadowania systemu lub do jawnego usuniecia

®" Przestrzen nazw:
= QObiekty sg globalne (jedna przestrzen nazw dla wszystkich procesow)

= Klucz typu key t (liczba catkowita dodatnia) identyfikuje obiekt w systemie.
Zalecany sposob generaciji:
key t ftok(const char *pathname, int id);

= Po otwarciu obiekt jest dostepny przez identyfikator obiektu IPC Systemu V;
identyfikator jest unikalny w ramach jednego mechanizmu IPC

Slajdy do wyktadu ,Systemy operacyjne 2”

IPC Systemu V — polecenia systemowe

Wyswietlanie wtasnosci obiektow IPC Systemu V aktualnie dostepnych

ipcs [-asmq | [-clupt] % informacja o obiektach wskazanego typu
ipcs [-smq] -i id % informacja o obiekcie o wskazanym identyfikatorze
Mozna rowniez uzywac interfejsu systemu plikdw (man namespaces(7)):

/proc/sysvipc/msg, /proc/sysvipc/sem, /proc/sysvipc/shm

Usuwanie obiektow IPC Systemu V aktualnie dostepnych (w wypadku
segmentow pamieci usuwanie jest odroczone — do czasu odtgczenia
wszystkich procesow-uzytkownikow) wymaga podania identyfikator id albo

klucza key:

ipcrm {msg | sem | shm } id % usuwanie obiektu zadanego typu
ipcrm [-g|-s|-m] id % j.w.
ipcrm [-Q | -S| -M] key % j.w.

Slajdy do wyktadu ,Systemy operacyjne 2”

Prawa dostepu do obiektow IPC

Dla kazdego obiektu IPC jgdro systemu przechowuje strukture (patrz
<sys/ipc.h>, svipc(7)) opisujgcg prawa dostepu:

struct ipc perm {
uid t uid; /* UID uzytkownika - witasciciela */
gid t gid; /* GID uzytkownika - wtasciciela */
uid t cuid; /* UID uzytkownika - twdrcy obiektu */
gid t cgid; /* GID uzytkownika - twdrcy obiektu */
mode t mode; /* tryby dostepu (RWXRWXRWX) */
ulong t seq; /* (SVR4) numer kolejny, zwiekszany o 1
przy kazdym usunieciu obiektu
o danym kluczu */
key t key; /* klucz */
};
Sprawdzenia praw dostepu dokonuje sie przy kazdej operacji na obiekcie IPC.

Slajdy do wyktadu ,Systemy operacyjne 2”

Tworzenie i otwieranie obiektow IPC

Do tworzenia i otwierania dostepu do obiektéw IPC Systemu V stuzy
wywotanie o postaci:

int XXXget(key t key, /* sz, */ int oflag)

XXX jest zastepowane przez

msg - dla kolejki komunikatow

shm - dla pamieci wspolnej (wowczas potrzebny jest parametr size t sz)
sem - dla semaforow (wowczas potrzebny jest parametr int sz)

oflag jest kombinacjg wartosci okreslajgcych prawa dostepu (RW-RW-RW-)
oraz IPC_CREAT iew. IPC_EXCL

Funkcja zwraca catkowitoliczbowy identyfikator obiektu, ktory jest
wykorzystywany przez proces do realizacji operacji na obiekcie. Identyfikator
jest unikalny w ramach kazdego typu obiektu IPC.

Uwaga: podanie w argumencie key statej IPC_PRIVATE daje gwarancje, ze
jest tworzony nowy, unikatowy obiekt IPC. Nie istnieje zadna kombinacja
pathname i id w wywotaniu ftok(), ktéra tworzy klucz o wartosci
IPC_PRIVATE

Slajdy do wyktadu ,Systemy operacyjne 2”

Tworzenie i otwieranie obiektow IPC - c.d

Sposoby tworzenia/otwierania dostepu do obiektéw IPC Systemu V.

Argument oflag

Obiekt o podanym
kluczu nie istnieje

Obiekt o podanym
Kluczu istnieje

Brak sygnalizatorow

Btad, errno==ENOENT

w porzadku, wskazanie
istniejgcego obiektu

IPC_CREAT

IPC_EXCL

IPC_CREAT w porzgdku, utworzenie | w porzadku, wskazanie
nowego wpisu istniejgcego obiektu

IPC_CREAT | w porzgdku, utworzenie | btad, errno==EEXIST

IPC_EXCL nowego wpisu

Slajdy do wyktadu ,Systemy operacyjne 2”

Kolejki komunikatow IPC Systemu V

® Komunikaty majg postac struktury:
struct msgbuf
long mtype; /* typ komunikatu, musi by¢& >0 */
char mtext[l]; /* dane komunikatu, diugosé >=0 (tu:1l)*/

}

Maksymalna dtugos¢ komunikatu (MSGMAX) i maksymalna liczba kolejek komunikatow w
systemie (MSGMNI) sg konfigurowalna na poziomie systemu.

® Kolejka jest identyfikowana przez identyfikator kolejki, zmienng typu int.

" Kolejka ma okreslong, w czasie tworzenia, dtugos¢ (maksymalna wartosc
MSGMNB konfigurowalna na poziomie systemu). Gdy zostanie ona przekroczona,
proces piszgcy do kolejki bedzie zablokowany (przy pracy w domysinym trybie:
blokujgcym).

® Komunikaty odczytywane z kolejki zachowujg strukture, chociaz w kolejce mogg
znajdowac sie komunikaty o réznej dtugosci.

® Operacja odczytu z pustej kolejki blokuje odbiorce (watek), jesli dostep jest w trybie
z blokowaniem.

Uwaga: Wartosci (MSGMAX, MSGMNI, MSGMNB) sg dostepne przez interfejs
systemu plikbw (msgmax, msgmnb, msgmni w /proc/kernel)

Slajdy do wyktadu ,Systemy operacyjne 2”

Wysytanie komunikatow

int msgsnd(int msqid, struct msgbuf *ptr,
size t len, int flag);

Funkcja wstawia komunikat o dtugosci len wskazywany przez ptr do kolejki
o identyfikatorze msqid, zwracajgc normalnie 0 (bgdz —1 w przypadku
niepowodzenia, errno okresla przyczyne).

flag o wartosci 0 => funkcja blokuje, jesli brak miejsca na komunikat

flag o wartosci IPC_NOWAIT => funkcja powraca z btedem
(errno==EAGAIN), jesli brakuje miejsca na komunikat w kolejce.

Uwagis:
" funkcja msgsnd nie interpretuje pola mtext struktury msgbuf

" len okresla rozmiar danych, t.j. sizeof(msgbuf)=sizeof(long); len moze
by¢ rowne 0 (struktura komunikatu zawiera tylko typ).

" pole mtype struktury msgbuf pozwala wigza¢ wiadomosci z tg samg
wartoscig mtype w liste (porzadek FIFO); system uktada tez inng liste:
wszystkich komunikatow danej kolejki, uporzgdkowang wg kolejnosci
wstawienia do kolejki

Slajdy do wyktadu ,Systemy operacyjne 2”

Odbior komunikatow

int msgrcv(int msqgid, struct msgbuf *ptr,
size t len, long type, int flag);

Funkcja odczytuje komunikat o maksymalnej dtugosci len do struktury
wskazywane] przez ptr z kolejki o identyfikatorze msqid, zwracajac
normalnie 0 (bgdz —1 w przypadku niepowodzenia, errno okresla
przyczyne). Domysinie funkcja blokuje, jesli nie ma zgdanej wiadomosci.

type o wartosci 0 => funkcja odczytuje najstarszy komunikat

type >0 => funkcja odczytuje najstarszy komunikat podanego typu (usuwajgc
go z kolejki), jesli jednoczesnie (flag & MSG _EXCEPT) to pobierany jest
najstarszy komunikat typu réznego od type

type<0 => funkcja odczytuje najstarszy komunikat typu <= |type]
flag o wartosci 0 => funkcja blokuje, jesli brak zgdanego komunikatu

(flag & IPC_NOWAIT)!=0 => funkcja powraca z btedem (ENOMSG), jesli
aktualnie nie ma odpowiedniego komunikatu w kolejce

(flag & MSG_NOERROR)!=0 => funkcja obcina komunikat, ktory jest za dtugi
(domyslinie zwracany jest btgd E2BIG).

Slajdy do wyktadu ,Systemy operacyjne 2”

Operacje sterujace kolejka komunikatow

int msgctl (int msqid, int cmd, struct msqid ds *buf);
Dostepne polecenia (cmd) dla kolejki o danym identyfikatorze (msqid):
IPC_RMID — usuwa z systemu kolejke komunikatéw (z wiadomosciami)

IPC_SET — ustawia nowe parametry kolejki, korzystajgc z czterech pdl struktury msqgid_ds:
msg_perm.uid, msg_perm.gid, msg_perm.mode, msg_gbytes, aktualizujgc tez
automatycznie pole msg_ctime

Polecenia te moze wykonac tylko proces z EUID rownym 0, msg_perm.cuid,msg_perm.uid
IPC_STAT — przekazuje do struktury wskazanej przez buf aktualne wartosci parametréw kolejki

struct msqgid ds =zawiera m.in. nastepujace pola:

struct ipc perm msg perm; /* prawa dostepu */
struct msg *msg first, *msg last; /* wskazniki listy komunikatéw */

msglen t msg cbytes; /* biezaca liczba bajtéw w kolejce */
msggnum_t msg_qgnum; /* biezaca liczba komunikatéw w kolejce */
msglen t msg gbytes; /* maks. dozwolona liczba bajtdéw w kolejce */

pid t msg lspid, msg lrpid; /* PID procesu ostatnio wywoiujacego
msgsnd () ,msgrcv () */
time_t msg stime, msg _rtime, msg ctime; /* czas ostatniego
wywotania msgsnd (), msgrcv (), msgctl () */

Slajdy do wyktadu ,Systemy operacyjne 2”

Fragmenty przykiadu (msend1/mrecv1)

Nadawca (msendl.c)

Odbiorca (mrecvl.c)

int queue, 1i; packet pl;
if ((queue = msgget (QUEKEY,
IPC CREAT| S IRUSR| S IWUSR|
S IRGRP|S IWGRP))<0) {
/* error */
}
pl.mtype=1;
for(i = 0 ; 1 < 10; 1i++){
snprintf (pl.mtext, TXTSZ,
"Packet %d\n”,1i)
if(TEMP_FAILURE_RETRY(
msgsnd (queue , &pl, TXTSZ,
0))<0) {
/* error */
}
sleep(1l);
y/* for () */
sleep(5);/* wait for reader */
if (msgctl (queue ,IPC RMID,NULL)<0) {
/* error handling */

b

int queue; packet pl;
if ((queue = msgget (QUEKEY,
IPC CREAT|S IRUSR|S IWUSR]
S IRGRP|S IWGRP))<0) {
/* error */
}
for (;;){
if(TEMP_FAILURE_RETRY(
msgrcv (queue , & pl, TXTSZ,
1,0))<0)
break;
printf ("%s", pl.mtext);
}

if (errno)

perror ("mrecvl error");
#define QUEKEY O0x00FFO0O0

#define TXTSZ 80

typedef struct {

long mtype;

char mtext [TXTSZ];

} packet;

Slajdy do wyktadu ,Systemy operacyjne 2”

Pamie¢ wspoélna IPC Systemu V
int shmget(key t key, size t len, int oflag);

Tworzy nowy/otwiera istniejgcy segment pamieci wspolnej o rozmiarze len i kluczu
key. oflag jest alternatywg bitowg praw dostepu i ew. IPC_CREAT, IPC_EXCL.
Tworzony segment jest wypetniany zerami. W przypadku powodzenia funkcja
zwraca identyfikator segmentu; przy niepowodzeniu —1.

void * shmat (int shmid, const void *addr, int flagqg)

Dotgcza segment pamieci wspolnej o identyfikatorze shmid , zwracajgc wskaznik do
poczagtku segmentu albo -1 — przy niepowodzeniu.

addr == 0 => adres segmentu wybierany jest przez jgdro

addr '= 0 => adres pod ktérym system ma dotgczy¢ segment; jesli przy tym (flag
& SHM RND) =0 => adres jest zaokrgglany do wielokrotnosci rozmiaru strony
pamieci wirtualne.

Segment jest dotaczany w trybie tylko do odczytu, gdy (flag&SHM_ RDONLY)!=0,
domyslnie — w trybie odczytu i zapisu.

int shmdt (const void *shmaddr) ;

Odtgcza segment wskazywany przez shmaddr. Segment nie jest usuwany, chyba ze
zaznaczono segment do usuniecia (shmctl) i nie ma wiecej dotgczen do segmentu
w systemie).

Slajdy do wyktadu ,Systemy operacyjne 2”

Operacje na pamieci wspolnej

int shmctl (int shmid, int cmd, struct shmid ds *buf) ;

Dostepne polecenia (cmd) dla segmentu o danym identyfikatorze (shmid):

IPC_RMID — zaznacza segment do usuniecia (usuniecie odbedzie sie po
odtgczeniu wszystkich procesow od segmentu, badz przy zamknieciu
systemu). Segment moze usungc¢ proces o EUID==0, przez twérce albo
wiasciciela — okreslonych przez pola shm_perm.cuid i shm_perm.uid w
strukturze informacyjnej shmid_ds segmentu.

IPC_SET — ustawia w strukturze informacyjnej shmid_ds segmentu wartosci pol
shm_perm.uid, shm_perm.gid, shm_perm.mode na wartosci pobrane z
bufora wskazywanego przez buf

Polecenia te moze wykonac tylko proces z EUID réwnym O, shm_perm.cuid,
shm_perm.uid (patrz struct shmid_ds)

IPC_STAT — zapisuje zawartos¢ struktury shmid _ds segmentu do bufora
wskazywanego przez buf

Slajdy do wyktadu ,Systemy operacyjne 2”

Struktura opisujgca segment pamieci

struct shmid ds. {
struct ipc perm shm perm; /* struct praw dostepu */
size t shm segsz; /* rozmiar segmentu w bajtach */
pid tshm lpid; /* PID procesu ostatniej operacji */
pid tshm cpid; /* PID procesu twoércy */
shmat t shm nattch; /* aktualna liczba dotaczen */
time t shm atime; /* czas ostatniego dotaczenia */
time t shm dtime; /* czas ostatniego odiaczenia */
time t shm ctime; /* czas ostatniej zmiany shmid ds

funkcja shmctl */

Slajdy do wyktadu ,Systemy operacyjne 2”

Pamiec¢ wspolna — prosty schemat uzycia

key t key; int shmid; char “*segptr; /* deklaracja zmiennych */

key = ftok(".", ‘A'); /* pozyskanie klucza */

1f ((shmid = shmget (key , SEGSIZE, IPC CREAT|IPC EXCL|0666)) == -1){
1f (errno==EEXIST) {

printf ("Segment pamieci istnieje\n");

if ((shmid = shmget (key , SEGSIZE, 0)) == -1){/* btad */
} else {/* btad */ ... }
} else {

/* Tu mozna wykona¢ inicjalizacje segmentu (domy$lnie zerowany) */
}
/* Dolaczenie segmentu pamieci wspdlnej do procesu */
if ((= (char *)shmat(shmid , 0, 0)) == (char *)-1) {
/* Btad dotaczenia segmentu */
} else printf (”Segment dotaczony\n”);
/* Uzytkowanie segmentu, t.Jj. odniesienia do
(0], ... [SEGSIZE-1]
*/
shmdt (); /* Oditaczenie segmentu po wykorzystaniu */

Slajdy do wyktadu ,Systemy operacyjne 2”

Efekty wywotania funkcji systemowych

Sys.V msg bez wptywu bez wptywu bez wptywu

POSIX MQ potomek dziedziczy deskryptory sg deskryptory sa

kopie otwartych deskr. zamykane zamykane
Sys V shm przydzielone segmenty segmenty sg segmenty sg
shm sg dotgczane do odigczane odtgczane

procesu potomnego

POSIX shm potomek zachowuje odwzorowanie jest odwzorowanie jest
odwzorowanie w usuwane usuwane
pamieci
Odwz. Potomek zachowuje odwzorowanie jest odwzorowanie jest
Pamieci odwzorowanie w usuwane usuwane

przez mmap() pamieci

Slajdy do wyktadu ,Systemy operacyjne 2”

