
L.J. Opalski, slides for Operating Systems course
1

IPC – part 1

Message queues and

shared memory

Last modification date: 03.03.2020

L.J. Opalski, slides for Operating Systems course
2

POSIX IPC

▪ POSIX IPC object have mostly kernel persistence (with notable exception of the

semaphore in memory, which is process persistent, i.e. it exists until the last

process which uses it closes connection)

Message

queues

Shared

memory

Semaphores

Header files <mqueue.h> <sys/mman.h> <semaphore.h>

Creation/ opening

access/removal

mq_open(),

mq_close(),

mq_unlink()

shm_open(),

shm_unlink()

sem_open()

sem_close(),

sem_unlink(),

sem_init(),

sem_destroy()

Control operations mq_getattr(),

mq_setattr()

ftruncate(),

fstat()

Communication mq_send()

mq_receive(),

mq_notify()

mmap()

munmap()

sem_wait(),

sem_trywait(),

sem_post(),

sem_getvalue()

L.J. Opalski, slides for Operating Systems course
3

POSIX – message queues

The idea of message-queue based communication

Basic features of the message queues:

▪ Each queue can be targeted by unrelated processes. The queue can be visible

in the system (eq. Linux) or not (depending on implementation).

▪ Message passing (of length 0 up to mq_msgsize) is reliable. The queue is

kernel persistent, i.e. it exists until it is explicitly removed or till the system

restart.

▪ The queue is identified by a descriptor of type mqd_t.. The queue descriptor can

be implemented as the file descriptor.

▪ Each queue has finite capacity (mq_maxmsg messages)

▪ Message queue interface functions are available via the real-time library: rt.

N1

N2

Nk

O1

Om

n
mq_maxmsg

L.J. Opalski, slides for Operating Systems course
4

POSIX – message queues

▪ Maximum message size (mq_msgsize) is specified during MQ creation.
Message retrieval has to be always prepared to messages of maximum
size..

▪ MQ has a maximum size (mq_maxmsg) which is specified during its
creation. When a thread attempts to exceed it – will be blocked (when in
standard blocking mode) until sufficient space is available or until
interrupted by a signal.

▪ Messages can be of different length, but MQ keeps their integrity..

▪ Messages are assigned priorities (a nonnegative integer smaller than
MQ_PRIO_MAX>=32). The highest priority messages are retrieved first.

▪ Message retrieval from the empty message queue blocks the thread – if
the operation is performed in the default blocking mode.

▪ Maximum number of MQ that can be open in one process
(MQ_OPEN_MAX >=8) is implementation dependent.

▪ A file interfaces exists to MQ parameters (man namespaces(7)) see:
/proc/sys/fs/mqueue

L.J. Opalski, slides for Operating Systems course
5

The header and MQ attributes

▪ Basic data structures and functions related to POSIX message queues are

defined in the header file: <mqueue.h>

▪ MQ attributes are exchanged within the following structure:

struct mq_attr {

long mq_flags; /* 0 or O_NONBLOCK */

long mq_maxmsg; /* Max. nr of message in MQ */

long mq_msgsize; /* Max. message length (bytes) */

long mq_curmsgs; /* Actual nr of messages in the queue */

};

L.J. Opalski, slides for Operating Systems course
6

Message queue creation/opening
mqd_t mq_open(const char *name, int oflag

/* , mode_t mode, struct mq_attr *attr */);

The function returns MQ descriptor or (mqd_t)(–1) on failure – setting error code

in errno .

Parameters:

name – the message queue name.

oflag - specifies access mode (O_RDONLY, O_WRONLY, O_RDWR,

O_CREAT, O_EXCL, O_NONBLOCK)

mode - access rights (r and w – as for files)

attr - pointer to the message attributes structure (fields: mq_maxmsg,

mq_msgsize)

Remarks:

• Function call can be interrupted by signal delivery to the process calling mq_open() (the

function returns –1, errno==EINTR),

• Linux implements message queues in a virtual file system, which can be mounted, e.g. to

the folder /dev/mqueue. Information on message queues can be found in a subtree of:

/proc/sys/fs/mqueue/

L.J. Opalski, slides for Operating Systems course
7

POSIX MQ – namespace and id-space

▪ The name argument points to a string naming a message queue.

▪ It is unspecified whether the name appears in the file system and is visible

to other functions that take pathnames as arguments.

▪ The name argument shall conform to the construction rules for a pathname.

• If name begins with the slash character, then processes calling

mq_open() with the same value of name shall refer to the same

message queue object, as long as that name has not been removed.

• If name does not begin with the slash character, the effect is

implementation-defined.

• The interpretation of slash characters other than the leading slash

character in name is implementation-defined. In Linux slash character

has to be the first char of name; no other instances of that character in

name are allowed.

▪ A message queue descriptor may be implemented using a file descriptor, in

which case applications can open up to at least {OPEN_MAX} files and message

queues.

▪ For Linux MQ characteristics: see mq_overview(7)

L.J. Opalski, slides for Operating Systems course
8

Closing access to MQ/ MQ removal

▪ When a process no longer needs an MQ it should close access to the MQ

with:

int mq_close(mqd_t mq);

▪ A message queue with given name can be removed with:

int mq_unlink(char *name);

Note: the function removes the name of the MQ from the system

immediately, but the queue is really destroyed when all processes, which

opened access to this MQ close the MQ descriptor with mq_close call.

L.J. Opalski, slides for Operating Systems course
9

Sending messages
int_t mq_send(mqd_t mqdes, const char *msg_ptr,

size_t msg_len, unsigned msg_prio);

stores a message (msg_ptr[0],…msg_ptr[msg_len-1]) into MQ mqdes

int mq_timedsend(mqd_t mqdes, const char *msg_ptr,

size_t msg_len, unsigned msg_prio,

const struct timespec *abs_timeout);

same as mq_send but with limited wait time in case MQ is full.

Parameters:
mqdes - message queue descriptor
msg_ptr - address of the message buffer
msg_len - message length (in bytes)
msg_prio - message priority (0 up to MQ_PRIORITY_MAX)
abs_timeout - specifies a ceiling on the time for which the call will block. It is an absolute timeout in

seconds and nanoseconds since the Epoch, 1970-01-01, 00:00:00 (UTC)
struct timespec {

time_t tv_sec; /* seconds */
long tv_nsec; /* nanosecondsy */

};

The above function return 0 on success –1 on failure (errno contains numeric error code).
The functions can be interrupted by signal delivery.

If several threads are blocked in mq_send()/mq_timedsend() because of full MQ, then upon free
space release one thread is unblocked – the one of highest priority and longest waiting time.

L.J. Opalski, slides for Operating Systems course
10

Message retrieval

int mq_receive(mqd_t mqdes, char *msg_ptr, size_t msg_len,

unsigned *msg_prio_p);

The function retrieves a message from the queue identified with descriptor

mqdes to a buffer of length msg_len, pointed at by msg_ptr. It is the oldest

message of highest priority. If msg_prio_p!=NULL, then *msg_prio_p is set to

the message priority.

Upon success the function returns length of the message. On failure it returns -

1 (after setting errno), and the queue does not change.

int mq_timedreceive(mqd_t mqdes, char *msg_ptr, size_t msg_len,

unsigned *msg_prio_p, const struct timespec *abs_timeout);

The function behaves as mq_receive(), but it returns not later than specified with

*abs_timeout (absolute timeout is based on the CLOCK_REALTIME clock).

Remarks:

▪ Both functions can be interrupted by signal delivery.

▪ If a process sets up asynchronous notification and yet it blocks at mq_receive() call then

a new message unblocks mq_receive() first.

L.J. Opalski, slides for Operating Systems course
11

Testing status of a message queue

int mq_getattr(mqd_t mqdes, struct mq_attr *attr);

It copies attribute structure of the MQ specified with descriptor mqdes

to *attr

int mq_setattr(mqd_t mqdes, struct mq_attr *newattr,
struct mq_attr *oldattr);

It copies attributes from *newattr to the attribute structure of the MQ specified with
descriptor mqdes; the old attributes are stored in *oldattr (oldattr!=NULL).

Remark: mq_setattr() can only change attribute mq_flags (0 or O_NONBLOCK).

L.J. Opalski, slides for Operating Systems course
12

Fragment of example code

Sender Reader

char buf[25], *mq_name=...;

mqd_t mqdes;

struct mq_attr attr;

attr.mq_maxmsg=1;//one msg only

attr.mq_msgsize=sizeof(buf);

mqdes=mq_open(mq_name,

O_RDWR | O_CREAT, FILE_MODE,

&attr);

if(mqdes==(mqd_t)-1){/* error handling */ }

while(fgets(buf,sizeof(buf),stdin)){

char *ptr;

int pri=msgnr%3;

ptr=strchr(buf,'\n');

if(ptr) *ptr='\0';

else buf[sizeof(buf)-1]='\0';

if(mq_send(mqdes,buf,strlen(buf)+1,pri)

<0) break;

msgnr++;

}

mq_close(mqdes);

int main(int argc, char *argv[]){

char buf[25], *mq_name=...;

unsigned int pri, timeout=...;

mqd_t mqdes;

struct mq_attr attr;

If((mqdes=mq_open(mq_name,

O_RDONLY,NULL))==(mqd_t)-1)

{/* error handling */}

if(mq_getattr(mqdes,&attr)<0) {/* error*/}

if(attr.mq_msgsize>sizeof(buf)){ exit(1); }

while(1) {

if(mq_receive(mqdes,

buf,sizeof(buf),

&pri)<0)

break;

buf[sizeof(buf)-1]='\0';

puts(buf);

}

mq_close(mqdes);

L.J. Opalski, slides for Operating Systems course
13

Asynchronous notification
int mq_notify(mqd_mqdes, struct sigevent *notification);

The function allows the calling process to register or unregister for delivery of one
asynchronous notification when a new message arrives on the empty
message queue referred to by the descriptor mqdes. For given MQ only one
process can be notified. It is possible to specify the following notifications: :

▪ Sending a signal to the process (SIGEV_SIGNAL)
▪ Start a thread with given working function and starting arg. (SIGEV_THREAD)
▪ “null” notification (SIGEV_NONE)
If notification==NULL →process unregisters notification

struct sigevent {

int sigev_notify; /* Method: SIGEV_NONE, SIGEV_SIGNAL, SIGEV_THREAD */

int sigev_signo; /* Notification signal (for SIGEV_SIGNAL) */

union sigval sigev_value; /* Data accompanying the notification */

void (*sigev_notify_function) (union sigval); /* Working function (for
SIGEV_THREAD) */

void *sigev_notify_attributes; /* Attributes of the thread working function */

};

union sigval { /* Data accompanying notification */

int sival_int;

void *sival_ptr;

};

Note: When the notification is sent to the registered process, its registration shall be
removed.

L.J. Opalski, slides for Operating Systems course
14

Example – notification with SIGUSR1

void handler(int sig, siginfo_t *s, void *p){/* Note: RT

signal handling */

signr=sig; pid_nr=s->si_pid; return;

}

static struct sigaction siga;

static struct sigevent not;

...

mqdes=mq_open(mq_name,O_RDONLY,NULL);

if(mqdes==(mqd_t)-1){/* błąd */}

siga.sa_flags=SA_SIGINFO; siga.sa_sigaction=handler;

if(sigaction(SIGUSR1,&siga,NULL)<0){/* error handling */}

not.sigev_notify=SIGEV_SIGNAL; /* Notification by signal*/

not.sigev_signo=SIGUSR1; /* Signal selection */

if(mq_notify(mqdes, ¬)<0)/* Registration of notif. */

{/* error */}

L.J. Opalski, slides for Operating Systems course
15

Example – notification with a new thread

int main(int argc, char *argv[]){

mqd_t mqdes;

struct sigevent not;

if(argc!= 2){ /* missing MQ name*/}

mqdes = mq_open(argv[1], O_RDONLY);

if (mqdes == (mqd_t) -1) {/* error handling */}

not.sigev_notify = SIGEV_THREAD;/* Notification by thread*/

not.sigev_notify_function = tfunc;/* working function */

not.sigev_notify_attributes = NULL;

not.sigev_value.sival_ptr = & mqdes; /* tfunc arguments*/

if (mq_notify(mqdes, ¬) == -1) {/* error handling */}

pause(); /* Process will terminate in tfunc() */

return EXIT_SUCCESS;

}

L.J. Opalski, slides for Operating Systems course
16

Example - continuation

static void tfunc(union sigval sv){/* thread worker fun */

struct mq_attr attr;

ssize_t nr;

void *buf;

mqd_t mqdes = *((mqd_t *) sv.sival_ptr); /* MQ descr. */

/* Retrieval of MQ attributes (msg size needed) */

if (mq_getattr(mqdes, &attr) == -1) {/* błąd */ }

/* Allocation of message buffer*/

buf = malloc(attr.mq_msgsize);

if (buf == NULL) {/* error handling … */}

/* Retrieval of the message (first in the queue) */

nr = mq_receive(mqdes, buf, attr.mq_msgsize, NULL);

if (nr == -1) {/* error handling */}

printf(„%ld B read from MQ\n”,(long) nr);

free(buf);/* Freeing buffer */

exit(EXIT_SUCCESS); /* Process termination */

}

L.J. Opalski, slides for Operating Systems course
17

Memory mapping of files

off

len

0

plik

przestrzeń adresowa
procesu

ptr

int fd=open(”plik”, O_RDWR);
char *ptr=mmap(0,PROT_READ|PROT_WRITE,
 MAP_SHARED, fd, off);

int fd=open(„plik”,O_RDWR);

char *ptr=mmap(0, len, PROT_READ|PROT_WRITE,

MAP_SHARED, fd, off);

Idea of memory mapping of a part of a file into the address space of a process

ptr[0] reference to the byte of the file number off

ptr[len-1] a reference to the last byte of the file which was mapped

file

Process address

space

int fd=open(“file”,O_RDWR);

char *ptr=mmap(0,len,PROT_READ|PROT_WRITE,

MAP_SHARED, fd, off)

L.J. Opalski, slides for Operating Systems course
18

Memory mapping of files – cont.
void * mmap (void *addr, size_t len, int protect, int flags, int fd, off_t off) –

creates mapping of len bytes of an open file associated with descriptor fd,
starting from byte nr off, to the address space of the calling process which is
returned by mmap. Parameter addr, suggests the address to mmap (it is
preferable to set addr=0, so that mmap makes a choice).

Parameter protect:

▪ MAP_PRIVATE updates to the mapped memory are not seen by other processes

▪ MAP_SHARED – memory changes are seen by other processes and are carried
out to the underlying file

protect contains also protection bits: PROT_READ, PROT_WRITE, PROT_EXEC

int msync (void *addr, size_t len, int flags) – flushes changes made to the
specified in-core copy of the mapped file (len bytes, starting from the address
addr) to the mapped file.

Parameter flags:
▪ MS_SYNC – function waits until data are written to the file
▪ MS_ASYNC – the function only initiates the writing

int munmap (void *addr, size_t len) – unmaps memory range: addr to
addre+len-1

L.J. Opalski, slides for Operating Systems course
19

POSIX IPC – shared memory

int shm_open(const char *name, int oflag,

mode_t mode);

Creates a new shared memory segment and/or opens connection between the
segment and a file descriptor which will be representing the segment. name is a

name of the segment (restrictions as for message queue names).

oflag:

▪ 0 – opens connection

▪ O_CREAT – creates segment and opens connection

▪ O_EXCL| O_CREAT – creates a new segment and opens connection;

otherwise fails

Uwagi:

▪ Creation of a new segment requires permission bits in: mode

▪ Linux creates POSIX shared memory object in a virtual file system, which can

be mounted - typically in the folder /dev/shm

▪ Documentation of POSIX shared mamory: shm_overview(7)

L.J. Opalski, slides for Operating Systems course
20

POSIX IPC – shared memory use

After opening connection to a shared memory segment:

▪ it is necessary to set its size:

int ftruncate(int fildes, off_t length);

Note: initial segment size is 0

▪ it is necessary to map the segment (represented with a file descriptor)

into address space of the process using mmap() with MAP_SHARED

▪ use memory pointer to access the shared memory segment

▪ after use the segment should be unmapped with munmap()

int shm_unlink(const char *name);

Destroys specified name of the POSIX shared memory segment.

L.J. Opalski, slides for Operating Systems course
21

POSIX IPC – shared memory, cont.

Some other functions, which are related to POSIX shared memory segment

use :

▪ close() – enables closing the file descriptor created with shm_open()

when no longer needed.

▪ fstat() – can retrieve struct stat with such information about memory

segments as:

▪ st_size - size,

▪ st_mode – permission bits

▪ st_uid, st_gid –UID and GID of the owner

▪ fchown() – enables change of the owner

▪ fchmod() – enables change of permission bits

L.J. Opalski, slides for Operating Systems course
22

Example of shm use
#define SHM_NAME ” /shm_tool” // segment name

#define SHM_LEN 100 // segment size

...

int shm_fd; /* shm id */

char *segptr; /* mapped adres of the start of shm segment */

if((shm_fd = shm_open(SHM_NAME,O_CREAT|O_EXCL|O_RDWR,0666)) == -1){

if(errno!=EEXIST){/* error handling */ ...}

else {

printf("Shared memory segment exists\n");

if((shm_fd = shm_open(SHM_NAME, O_RDWR, 0666)) == -1){

/* error handling */ ...

}

}

} else {

printf(„New shared memory segment created\n");

if(ftruncate(shm_fd,SHM_LEN)==-1){ /* error handling */ ...}

}

if((segptr = (char *)mmap(NULL, SHM_LEN,PROT_READ|PROT_WRITE,

MAP_SHARED, shm_fd,0)) == (char *)-1){

/* error handling */ ...

}

/* segptr[0],..., segptr[SHM_LEN-1] can be used to access shm segment

* as if it was a memory buffer of length SHM_LEN

*/

munmap(segptr , SHM_LEN); /* invalidate shm mapping when not needed */

L.J. Opalski, slides for Operating Systems course
23

UNIX System V IPC

▪ Unix System V IPC objects have kernel persistence – they exist until the kernel

is re-loaded or they are explicitly deleted.

▪ Namespace

▪ IPC objects are global (one namespace, accessible to all processes)

▪ A key of type key_t (positive integer) identifies an object in the system..

Suggested method of the key generation:

key_t ftok(const char *pathname, int id);

▪ After opening an IPC object is available to the process via IPC System V

object identifier; the identifier is unique for each IPC object type.

Message queues Shared

memory

Semaphores

Header file <sys/msg.h> <sys/shm.h> <sys/sem.h>

Creation/opening msgget() shmget() semget()

Control operations msgctl() shmctl() semctl()

Communication msgsnd()

msgrcv()

shmat()

shmdt()

semop()

L.J. Opalski, slides for Operating Systems course
24

UNIX System V IPC – commands

Properties of the currently available System V IPC objects can be displayed

with operating system commands:

ipcs [-asmq] [-clupt] % info about IPC object of specified type

ipcs [-smq] -i id % info about IPC object of given id

One can also use file interface (see namespaces(7)):

/proc/sysvipc/msg, /proc/sysvipc/sem, /proc/sysvipc/shm

Removal of System V IPC objects with system command ipcrm requires the

object identifier id or key :

ipcrm {msg | sem | shm } id % removal of specific type of IPC object

ipcrm [-q | -s | -m] id % the same.

ipcrm [-Q | -S | -M] key % the same but with key not id

L.J. Opalski, slides for Operating Systems course
25

Unix System V IPC objects – access rights

For each IPC object the kernel creates and maintains the following structure
(see <sys/ipc.h>, svipc(7)) with access rights to the object:

struct ipc_perm {

uid_t uid; /* UID id of the owner */

gid_t gid; /* GID id of the owner group */

uid_t cuid; /* UID id of the object creator (user id) */

gid_t cgid; /* GID id of the object creator group */

mode_t mode; /* access rights (RWXRWXRWX) */

ulong_t seq; /* (SVR4) sequence number, incremented after

each destruction of an object with given key */

key_t key; /* key */

};

Access rights are checked prior to each operation involving IPC object.

L.J. Opalski, slides for Operating Systems course
26

Creation and opening access to IPC objects

The following describes generic format of functions which enable IPC object
creation and opening access:

int XXXget(key_t key, /* sz, */ int oflag)

XXX is substituted by

msg - for message queues

shm - for shared memory (parameter size_t sz is needed than)

sem - for semaphores (parameter int sz is needed than)

oflag is a bit OR of patterns that determine access rights (RW-RW-RW-) and
IPC_CREAT, possibly IPC_EXCL

The function returns integral object id, which is subsequently used for operations
involving the object. The id is unique within a type of IPC objects (msg, shm,
sem).

Note: If key takes the special value IPC_PRIVATE than a new IPC object is
created and such, that no combination of pathname and id parameters in
ftok() call is able to create the special value: IPC_PRIVATE.

L.J. Opalski, slides for Operating Systems course
27

Parameter oflag IPC object with given key

does not exists

IPC object with given

key already exists

No IPC_CREAT

and no IPC_EXCL

bit patterns

IPC_CREAT

bit pattern set

Error, errno==ENOENT OK, the object with

given key is subject to

opening access

operation
OK, new object may be

created

as above

(IPC_CREAT |

IPC_EXCL)

bit pattern set

OK, new object may be

created

Error, errno==EEXIST

Creation and opening access to IPC objects

Results of XXXget() function calls depend on the parameter oflag as

shown below. Success of the attempt depends also on access rights,

obviously.

L.J. Opalski, slides for Operating Systems course
28

Unix System V IPC – message queues
▪ Messages are represented with structures of the following form:

struct msgbuf {

long mtype; /* positive (>0) message type */

char mtext[1];/* message content length (>=0)(here:1)*/

}

Maximum message length (MSGMAX) is the operating system configurable value.

▪ The open message queue is represented by a identifier of int.type.

▪ The message queue has maximum capacity MSGMNB that is system configurable.
When a process thread attempts to overflow the queue – is blocked (when performs
message send in default blocking mode).

▪ Message are guaranteed to keep integrity, even though the messages can be of
different sizes..

▪ Message retrieval blocks the process thread (if attempt is made in the default
blocking mode) when the requested message is not found (e.g. queue is empty).

▪ The maximum number of queues (MSGMNI) is operating system configurable

Note: file interface is available for (MSGMAX, MSGMNB, MSGMNI) via msgmax,
msgmnb, msgmni entries in the /proc/kernel directory

L.J. Opalski, slides for Operating Systems course
29

Sending messages
int msgsnd(int msqid, struct msgbuf *ptr,

size_t len, int flag);

The function attempts to send the message of length len stored at address
ptr to the message queue identified with msqid id. When successful the
function returns 0 (–1 in case of error with global variable errno set to an
numeric error code).

flag if 0 => the function blocks when there is not enough space
for the message in the queue

flag equal to IPC_NOWAIT => the function returns error (errno==EAGAIN),
when there is not enough space for the message in the queue

Remarks:

▪msgsnd does not interpret the message structure (besides mtype)

▪ len specifies size of data part of the struct msgbuf, i.e. should be equal to
sizeof(msgbuf) – sizeof(long) ; len can be 0.

▪ Message type (mtype) makes possible to link all messages of the same
type in a list (FIFO order); the message queue creates also a list of all
messages (FIFO order).

L.J. Opalski, slides for Operating Systems course
30

Message retrieval
int msgrcv(int msqid, struct msgbuf *ptr,

size_t len, long type, int flag);

The function retrieves a message of maximum length (of data part) equal to len
into a buffer pointed at by ptr from a message queue with identifier msqid.
On success the message is removed from the queue and 0 is returned.–1 is
returned in case of error with global variable errno set to an numeric error
code). By default the function blocks if no requested message is found.

type == 0 => the function retrieves the oldest message

type >0 => the function retrieves the oldest message of specified type; if also
(flag & MSG_EXCEPT) is not zero then the function retrieves the oldest
message of type that is different from type

type<0 => the function retrieves the oldest message of type <= |type|

flag o wartości 0 => funkcja blokuje, jeśli brak żądanego komunikatu

(flag & IPC_NOWAIT)!=0 => the function fails with errno==ENOMSG if no
requested message is in the queue

(flag & MSG_NOERROR)!=0 => the function truncates too long message
(normally failure is accompanied with errno==E2BIG.

L.J. Opalski, slides for Operating Systems course
31

Control operations
int msgctl(int msqid, int cmd, struct msqid_ds *buf);

The following commands (cmd) can be issued for a message queue with given id (msqid):

IPC_RMID – the queue is destroyed immediately (the messages are lost)

IPC_SET – sets new parameters of the queue, 4 fields of the structure msqid_ds are modified:
msg_perm.uid, msg_perm.gid, msg_perm.mode, msg_qbytes, also msg_ctime is
updated. The command can be only performed for processes which EUID is equal: 0,
msg_perm.cuid or msg_perm.uid

IPC_STAT – copies to the structure pointed at by buf current parameters of the queue

struct msqid_ds contains the following fields (among others):

struct ipc_perm msg_perm; /* access rights */

struct msg *msg_first, *msg_last; /* ptrs to msg lists */

msglen_t msg_cbytes; /* current nr of bytes used */

msgqnum_t msg_qnum; /* current nr of messages*/

msglen_t msg_qbytes; /* max. nr of messages in the queue */

pid_t msg_lspid, msg_lrpid; /* PID of the most recent process that

called msgsnd(),msgrcv() */

time_t msg_stime, msg_rtime, msg_ctime; /* time-stamp of the

the most recent call of msgsnd(), msgrcv(), msgctl() */

L.J. Opalski, slides for Operating Systems course
32

Example fragments (msend1/mrecv1)

Sender (msend1.c) Reader (mrecv1.c)

int queue, i; packet p1;

if((queue = msgget(QUEKEY,

IPC_CREAT| S_IRUSR| S_IWUSR|

S_IRGRP|S_IWGRP))<0){

/* error */

}

p1.mtype=1;

for(i = 0 ; i < 10; i++){

snprintf(p1.mtext,TXTSZ,

"Packet %d\n”,i)

if(TEMP_FAILURE_RETRY(

msgsnd(queue ,&p1, TXTSZ,

0))<0){

/* error */

}

sleep(1);

}/* for() */

sleep(5);/* wait for reader */

if(msgctl(queue ,IPC_RMID,NULL)<0){

/* error handling */

};

int queue; packet p1;

if((queue = msgget(QUEKEY,

IPC_CREAT|S_IRUSR|S_IWUSR|

S_IRGRP|S_IWGRP))<0){

/* error */

}

for(;;){

if(TEMP_FAILURE_RETRY(

msgrcv(queue ,& p1, TXTSZ,

1,0))<0)

break;

printf("%s", p1.mtext);

}

if(errno) perror("mrecv1 error");

==========================

#define QUEKEY 0x00FF00

#define TXTSZ 80

typedef struct {

long mtype;

char mtext[TXTSZ];

} packet;

L.J. Opalski, slides for Operating Systems course
33

Unix System V IPC – shared memory
int shmget(key_t key, size_t len, int oflag);

It creates new or opens existing shared memory segment of size len and key key.
oflag contains bit OR-ed value of access rights and possibly IPC_CREAT,
IPC_EXCL. The segment is zeroed. When successful the function returns shared
memory identifier and –1on failure.

void * shmat(int shmid, const void *addr, int flag);

It attaches the shared memory segment specified with the identifier shmid to the
address space of the calling process. Ptr to the beginning of the memory segment is
returned on success; otherwise -1.

addr == 0 => segment location is selected by the kernel

addr != 0 => suggested address of the segment in the process space; if also (flag &
SHM_RND) !=0 => address is rounded to a multiple of the virtual memory page size.

Segment is attached in read-only mode when (flag&SHM_RDONLY)!=0, otherwise the
access mode is read-write..

int shmdt(const void *shmaddr);

Detaches the segment located at address shmaddr from address space of the
process. Note that the segment is not removed from the system – unless it has been
marked for removal and there is no process currently attached to the segment.

L.J. Opalski, slides for Operating Systems course
34

Control operations

int shmctl(int shmid, int cmd, struct shmid_ds *buf);

Available commands (cmd) for a shared memory segment with given id (shmid):

IPC_RMID – marks the segment for removal (it will be removed when no process

attaches it or the system is closed). A segment can be marked by a process

with EUID==0, the created or the owner – as determined by shm_perm.cuid

and shm_perm.uid fields in the info structure shmid_ds of the segment.

IPC_SET – replaces values of shm_perm.uid, shm_perm.gid,

shm_perm.mode fields of the info structure shmid_ds with values from the

structure pointed at by buf

These operations can be performed by a process with EUID equal to 0,

shm_perm.cuid or shm_perm.uid (see struct shmid_ds)

IPC_STAT – stores the content of the info structure shmid_ds of the specified

segment to the structure pointed at by buf

L.J. Opalski, slides for Operating Systems course
35

The info structure of shared memory segments

struct shmid_ds. {

struct _ipc_perm shm_perm; /* access rights structure */

size_t shm_segsz; /* segment size in bytes */

pid_tshm_lpid; /* PID of last shmat()/smdt() */

pid_tshm_cpid; /* PID of creator */

shmat_t shm_nattch; /* nr of current attaches */

time_t shm_atime; /* last attach time */

time_t shm_dtime; /* last detach time */

time_t shm_ctime; /* last change time */

...

};

L.J. Opalski, slides for Operating Systems course
36

Example of shared memory segment use
key_t key; int shmid; char *segptr; /* variables declared */

key = ftok(".", ‘A'); /* key generation */

if((shmid = shmget(key , SEGSIZE, IPC_CREAT|IPC_EXCL|0666)) == -1){

if(errno==EEXIST){

printf(“Shared memory segment exists\n");

if((shmid = shmget(key , SEGSIZE, 0)) == -1){/* error */ ...}

} else {/* error*/ ... }

} else {

/* here some initialization of the segment might be done */

}

/* Attachment of the segment to the process address space */

if((segptr = (char *)shmat(shmid , 0, 0)) == (char *)-1) {

/* attach error*/ ...

} else printf(“shared memory segment has been attached\n”);

/* Here segment use might occur, in the form of references to

segptr [0],... segptr [SEGSIZE-1]

*/

....

shmdt(segptr); /* Segment detach after use */

L.J. Opalski, slides for Operating Systems course
37

Effects of some system calls on IPC objects

Object type fork() exec() _exit()

Sys.V msg Does not matter Does not matter Does not matter

POSIX MQ Child inherits open

descriptors

Descriptors are

closed

Descriptors are

closed

Sys V shm Segments are

attached to the child

address space

Segments are

detached

Segments are

detached

POSIX shm Child keeps memory

mapping

Mapping removed Mapping removed

Memory

mapping with

mmap()

Child keeps memory

mapping

Mapping removed Mapping removed

