IPC - part 1
Message gueues and
shared memory

Last modification date: 03.03.2020

L.J. Opalski, slides for Operating Systems course

POSIX IPC

Message Shared Semaphores
queues memory

Header files <mgueue.h> <sys/mman.h> <semaphore.h>
Creation/ opening mq_open(), shm_open(), sem_open()
access/removal mq_close(), shm_unlink() sem_close(),
mq_unlink() sem_unlink(),
sem_init(),
sem_destroy()
Control operations mq_getattr(), ftruncate(),
mq_setattr() fstat()
Communication mq_send() mmap() sem_wait(),
mq_receive(), munmap() sem_trywait(),
mq_notify() sem_post(),

sem_getvalue()

" POSIX IPC object have mostly kernel persistence (with notable exception of the
semaphore in memory, which is process persistent, i.e. it exists until the last
process which uses it closes connection)

2 L.J. Opalski, slides for Operating Systems course

POSIX — message queues

()
®

n
«—1 »
@ mq_maxmsg
< >

The idea of message-queue based communication
Basic features of the message queues:

® Each queue can be targeted by unrelated processes. The queue can be visible
in the system (eq. Linux) or not (depending on implementation).

" Message passing (of length O up to mq_msgsize) is reliable. The queue is
kernel persistent, i.e. it exists until it is explicitly removed or till the system
restart.

" The queue is identified by a descriptor of type mqd_t.. The queue descriptor can
be implemented as the file descriptor.

" Each queue has finite capacity (mg_maxmsg messages)
" Message queue interface functions are available via the real-time library: rt.

3 L.J. Opalski, slides for Operating Systems course

POSIX — message queues

® Maximum message size (mg_msgsize) is specified during MQ creation.
Message retrieval has to be always prepared to messages of maximum
size..

® MQ has a maximum size (mq_maxmsg) which is specified during its
creation. When a thread attempts to exceed it — will be blocked (when in
standard blocking mode) until sufficient space is available or until
interrupted by a signal.

" Messages can be of different length, but MQ keeps their integrity..

® Messages are assigned priorities (a nonnegative integer smaller than
MQ_PRIO _MAX>=32). The highest priority messages are retrieved first.

® Message retrieval from the empty message queue blocks the thread — if
the operation is performed in the default blocking mode.

" Maximum number of MQ that can be open in one process
(MQ_OPEN_MAX >=8) is implementation dependent.

" A file interfaces exists to MQ parameters (man namespaces(7)) see:
/proc/sys/fs/imqueue

L.J. Opalski, slides for Operating Systems course

The header and MQ attributes

® Basic data structures and functions related to POSIX message queues are
defined in the header file: <mqueue.h>

" MQ attributes are exchanged within the following structure:

struct mg attr ({
long mg flags; /* 0 or O NONBLOCK */
long mg maxmsg; /* Max. nr of message in MQ */
long mg msgsize; /* Max. message length (bytes) */
long mg curmsgs; /* Actual nr of messages in the queue */

b

L.J. Opalski, slides for Operating Systems course

Message queue creation/opening

mad t mg open (const char *name, int oflag
/* , mode t mode, struct mq attr *attr */);

The function returns MQ descriptor or (mqd_t)(—1) on failure — setting error code
in errno .

Parameters:
name — the message queue name.

oflag - specifies access mode (O_RDONLY, O WRONLY, O_RDWR,
O_CREAT, O_EXCL, O _NONBLOCK)

mode - access rights (r and w — as for files)
attr - pointer to the message attributes structure (fields: mq_maxmsg,

mg_msgsize)
Remarks:

* Function call can be interrupted by signal delivery to the process calling mg_open() (the
function returns —1, errno==EINTR),

« Linux implements message queues in a virtual file system, which can be mounted, e.g. to
the folder /dev/Imqueue. Information on message queues can be found in a subtree of:
/proc/sys/fs/mqueue/

6 L.J. Opalski, slides for Operating Systems course

POSIX MQ — namespace and id-space

" The name argument points to a string haming a message queue.

= |t is unspecified whether the name appears in the file system and is visible
to other functions that take pathnames as arguments.

= The name argument shall conform to the construction rules for a pathname.

- If name begins with the slash character, then processes calling
mq_open() with the same value of name shall refer to the same
message queue object, as long as that name has not been removed.

- If name does not begin with the slash character, the effect is
implementation-defined.

- The interpretation of slash characters other than the leading slash
character in name is implementation-defined. In Linux slash character
has to be the first char of name; no other instances of that character in
name are allowed.

" A message queue descriptor may be implemented using a file descriptor, in
which case applications can open up to at least {OPEN_MAX} files and message
gueues.

" For Linux MQ characteristics: see mqg_overview(7)

L.J. Opalski, slides for Operating Systems course

Closing access to MQ/ MQ removal

® When a process no longer needs an MQ it should close access to the MQ
with:

int mq close(mgd t mq);

" A message queue with given name can be removed with:

int mq unlink(char *name);

Note: the function removes the name of the MQ from the system
immediately, but the queue is really destroyed when all processes, which
opened access to this MQ close the MQ descriptor with mq_close call.

L.J. Opalski, slides for Operating Systems course

Sending messages

int t mg send(mgd t mgdes, const char *msg ptr,
size t msg len, unsigned msg prio);
stores a message (msg_ptr[0],...msg_ptr[msg_len-1]) into MQ mqgdes

int mqg timedsend(mgd t mgdes, const char *msg ptr,
size t msg len, unsigned msg prio,
const struct timespec *abs timeout);
same as mq_send but with limited wait time in case MQ is full.

Parameters:
mqgdes - message queue descriptor
msg_ptr - address of the message buffer
msg_len - message length (in bytes)
msg_prio - message priority (0 up to MQ_PRIORITY_MAX)
abs_timeout - specifies a ceiling on the time for which the call will block. It is an absolute timeout in

seconds and nanoseconds since the Epoch, 1970-01-01, 00:00:00 (UTC)
struct timespec {
time_ttv_sec; [* seconds */
long tv_nsec; [* nanosecondsy */

The above function return 0 on success —1 on failure (errno contains numeric error code).
The functions can be interrupted by signal delivery.

If several threads are blocked in mq_send()/mg_timedsend() because of full MQ, then upon free
space release one thread is unblocked — the one of highest priority and longest waiting time.

9 L.J. Opalski, slides for Operating Systems course

Message retrieval

Int mg_receive(mqgd_t mqdes, char *msg_ptr, size_t msg_len,
unsigned *msg_prio_p);
The function retrieves a message from the queue identified with descriptor
maqdes to a buffer of length msg_len, pointed at by msg_ptr. It is the oldest

message of highest priority. If msg_prio_p!=NULL, then *msg_prio_p is set to
the message priority.

Upon success the function returns length of the message. On failure it returns -
1 (after setting errno), and the queue does not change.

Int mg_timedreceive(mqgd_t mqdes, char *msg_ptr, size_t msg_len,
unsigned *msg_prio_p, const struct timespec *abs_timeout);

The function behaves as mq_receive(), but it returns not later than specified with
*abs timeout (absolute timeout is based on the CLOCK_ REALTIME clock).

Remarks:
" Both functions can be interrupted by signal delivery.

" If a process sets up asynchronous notification and yet it blocks at mqg_receive() call then
a new message unblocks mq_receive() first.

10 L.J. Opalski, slides for Operating Systems course

Testing status of a message gueue

Int mq_getattr(mqd_t mqdes, struct mq_attr *attr);

It copies attribute structure of the MQ specified with descriptor mgdes
to *attr

Int mg_setattr(mgd_t mgdes, struct mq_attr *newattr,
struct mq_attr *oldattr);

It copies attributes from *newattr to the attribute structure of the MQ specified with
descriptor mqgdes; the old attributes are stored in *oldattr (oldattr!=NULL).

Remark: mqg_setattr() can only change attribute mqg_flags (0 or O_NONBLOCK).

11 L.J. Opalski, slides for Operating Systems course

Fragment of example code

Sender

Reader

char buf[25], *mg_name=..;
mqd_t mqdes;
struct mq_attr attr;
attr.mg_maxmsg=1;//one msg only
attr.mqg_msgsize=sizeof(buf);
mgdes=mqg_open(mq_name,
O_RDWR | O_CREAT, FILE_MODE,
&attr);
if(mgdes==(mqd_t)-1){/* error handling */ }
while(fgets(buf,sizeof(buf),stdin)){
char *ptr;
int pri=msgnr%3;
ptr=strchr(buf,\n");
if(ptr) *ptr="0";
else buf[sizeof(buf)-1]=
if(mq_se
<0) break;
msgnr++;
}

mq_close(mqgdes);

gdes,buf,strlen(buf)+1,pri)

int main(int argc, char *argv[]{

char buf[25], *mg_name=...;

unsigned int pri, timeout=...;

mqd_t mqgdes;

struct mq_attr attr;

If((mgdes=mq_open(mqg_name,
O_RDONLY,NULL))==(mqgd_t)-1)
{* error handling */}

if(mq_getattr(mqgdes,&attr)<0) {/* error*/}

if(attr.mg_msgsize>sizeof(buf)){ exit(1); }

while(1) {
if(mqg_receive(mqdes,

— buf,sizeof(buf),

&pri)<0)
break;

buf[sizeof(buf)-1]="\0";
puts(buf);

}

mq_close(mqdes);

12

L.J. Opalski, slides for Operating Systems course

Asynchronous notification

Int mq_notify(mgd_mqdes, struct sigevent *notification);

The function allows the calling process to register or unregister for delivery of one
asynchronous notification when a new message arrives on the empty
message queue referred to by the descriptor mgdes. For given MQ only one
process can be notified. It is possible to specify the following naotifications: :

® Sending a signal to the process (SIGEV_SIGNAL)

® Start a thread with given working function and starting arg. (SIGEV_THREAD)

" “null” notification (SIGEV_NONE)
If notification==NULL ->process unreqisters notification

struct sigevent {
int sigev_notify; /* Method: SIGEV_NONE, SIGEV_SIGNAL, SIGEV_THREAD */

int sigev_signo; /* Notification signal (for SIGEV_SIGNAL) */

union sigval sigev_value; /* Data accompanying the notification */

void (*sigev_notify function) (union sigval); /* Working function (for

SIGEV_THREAD) */

void *sigev_notify_ attributes; /* Attributes of the thread working function */
|3
union sigval { [* Data accompanying notification */

int sival_int;

void *sival_ptr;

}

Note: When the notification is sent to the registered process, its registration shall be
removed. 13 L.J. Opalski, slides for Operating Systems course

Example — notification with SIGUSR1

void handler (int sig, siginfo t *s, void *p){/* Note: RT

signal handNing */

signr=si pid nr=s->si pid; return;

static struct sigactiomssiga;
static struct sigevent not;

mgdes=mq open (mg name, O RDONLY, NULL)
if (mgdes==(mgd t)-1){/* btad */}
\Eig?.sa_flags=SA;SIGINFO; siga.sa sigaction= an%iii;
if (sigaction (SIGUSR1, &siga, NULL)<0) {/* error handling */}
not.sigev notify=SIGEV SIGNAL; /* Notification by signal*/

ev signo=SIGUSR1l; /* Signal selection */
&¢not)<0) /* Registration of notif. */

4

if (mqg notify (mgde
{/* error */}

14 L.J. Opalski, slides for Operating Systems course

Example — notification with a new thread

int main(int argc, char *argv[]) {
mgd t mqgdes;
struct sigevent not;

if (argc!= 2){ /* missing MQ name*/}

mgdes = mg open(argv[1l], O RDONLY) ;
if (mgdes == (mgd t) -1) {/* error handling */}

not.sigev notify = SIGEV THREAD;/* Notification by thread*/
not.sigev notify function = tfunc;/* working function */

| not.sigev_notify attributes = NULL;

not.sigev value.sival ptr = & mqgdes; /* tfunc arguments*/
\

if (mg notify(mgdes, ¬) == -1) {/* error handling */}

pause(); /* Process will terminate in tfunc() */

return EXIT SUCCESS;

15 L.J. Opalski, slides for Operating Systems course

Example - continuation

static void tfunc(union sigval sv) {/* thread worker fun */
struct mg attr attr;
ssize t nr;
void *buf;
mgd t mgdes = *((mgd t *) sv.sival ptr); /* MQ descr. */
/* Retrieval of MQ attributes (msg size needed) */
if (mg getattr (mgdes, &attr) == -1) {/* biad */ }
/* Allocation of message buffer*/
buf = malloc(attr.mg msgsize);
if (buf == NULL) {/* error handling .. */}
/* Retrieval of the message (first in the queue) */
nr = mgq receive (mgdes, buf, attr.mg msgsize, NULL);
if (nr == -1) {/* error handling */}
printf (,%$1d B read from MQ\n”, (long) nr);
free(buf);/* Freeing buffer */
exit (EXIT SUCCESS) ; /* Process termination */

16 L.J. Opalski, slides for Operating Systems course

Memory mapping of files

Idea of memory mapping of a part of a file into the address space of a process

file < len N
0 off

int fd=open(“file”,0_RDWR);
char *ptr=mmap(0,len,PROT_READ|PROT_WRITE,
ptr MAP_SHARED, fd, off)

Process address

space
ptr[O] reference to the byte of the file number off
ptr[len-1] a reference to the last byte of the file which was mapped

17 L.J. Opalski, slides for Operating Systems course

Memory mapping of files — cont.

void * mmap (void *addr, size _t len, int protect, int flags, int fd, off t off) —
creates mapping of len bytes of an open file associated with descriptor fd,
starting from byte nr off, to the address space of the calling process which is
returned by mmap. Parameter addr, suggests the address to mmap (it is
preferable to set addr=0, so that mmap makes a choice).

Parameter protect:
" MAP_PRIVATE updates to the mapped memory are not seen by other processes

" MAP_SHARED — memory changes are seen by other processes and are carried
out to the underlying file

protect contains also protection bits: PROT_READ, PROT _WRITE, PROT_EXEC

iInt msync (void *addr, size t len, int flags) — flushes changes made to the
specified in-core copy of the mapped file (len bytes, starting from the address
addr) to the mapped file.

Parameter flags:
" MS_SYNC - function waits until data are written to the file
" MS_ASYNC - the function only initiates the writing

Int munmap (void *addr, size tlen) — unmaps memory range: addr to
addre+len-1

18 L.J. Opalski, slides for Operating Systems course

POSIX IPC — shared memory

int shm open(const char *name, int oflag,
mode t mode) ;

Creates a new shared memory segment and/or opens connection between the
segment and a file descriptor which will be representing the segment. name is a

name of the segment (restrictions as for message gqueue names).
oflag:

® 0 — opens connection

" O CREAT - creates segment and opens connection

" O EXCL| O_CREAT - creates a new segment and opens connection;
otherwise fails

Uwaaqi:
® Creation of a new segment requires permission bits in: mode

" Linux creates POSIX shared memory object in a virtual file system, which can
be mounted - typically in the folder /dev/shm

® Documentation of POSIX shared mamory: shm_overview(7)

19 L.J. Opalski, slides for Operating Systems course

POSIX IPC - shared memory use

After opening connection to a shared memory segment:

" itis necessary to set its size:

int ftruncate(int fildes, off t length);

Note: initial segment size is 0

" itis necessary to map the segment (represented with a file descriptor)
into address space of the process using mmap() with MAP_SHARED

" use memory pointer to access the shared memory segment

" after use the segment should be unmapped with munmap()

int shm unlink(const char *name) ;

Destroys specified name of the POSIX shared memory segment.

20 L.J. Opalski, slides for Operating Systems course

POSIX IPC - shared memory, cont.

Some other functions, which are related to POSIX shared memory segment
use :

" close() — enables closing the file descriptor created with shm_open()
when no longer needed.

" fstat() — can retrieve struct stat with such information about memory
segments as:

= St size - size,
= st _mode — permission bits
= st uid, st_gid —UID and GID of the owner

" fchown() — enables change of the owner

" fchmod() — enables change of permission bits

21 L.J. Opalski, slides for Operating Systems course

Example of shm use

#define SHM NAME ” /shm tool” // segment name
#define SHM LEN 100 // segment size

int shm fd; /* shm id */

char *segptr; /* mapped adres of the start of shm segment */
if((= shm open (SHM NAME,O CREAT|O EXCL|O RDWR,0666)) == -1) {
if (errno!=EEXIST) {/* error handling */ ...}
else {
printf ("Shared memory segment exists\n");
1f((= shm open (SHM NAME, O RDWR, 0666)) == -1) {
/* error handling */
}
}
} else {
printf (,,New shared memory segment created\n");
if (ftruncate (,SHM LEN)==-1){ /* error handling */ ...}
}
if ((segptr = (char *)mmap (NULL, SHM_LEN, PROT_READI PROT_WRITE,
MAP_SHARED, ,0)) == (char *)-1){
/* error handling */
}
/* segptr[0],..., segptr[SHM LEN-1] can be used to access shm segment

* as if it was a memory buffer of length SHM LEN
*/
munmap (segptr , SHM LEN); /* invalidate shm mapping when not

needed */

22 L.J. Opalski, slides for Operating Systems course

UNIX System V IPC

Message queues | Shared Semaphores
memory

Header file <sys/msg.h> <sys/shm.h> <sys/sem.h>

Creation/opening msgget() shmget() semget()

Control operations msgctl() shmctl() semctl()

Communication msgsnd() shmat() semop()
msgrcv() shmdt()

® Unix System V IPC objects have kernel persistence - they exist until the kernel
Is re-loaded or they are explicitly deleted.

® Namespace
= |PC objects are global (one namespace, accessible to all processes)

= A key of type key t (positive integer) identifies an object in the system..
Suggested method of the key generation:

key t ftok(const char *pathname, int id);

= After opening an IPC object is available to the process via IPC System V
object identifier; the identifier is unique for each IPC object type.

23 L.J. Opalski, slides for Operating Systems course

UNIX System V IPC — commands

Properties of the currently available System V IPC objects can be displayed
with operating system commands:

ipcs [-asmq] [-clupt] % info about IPC object of specified type
ipcs [-smq | -i id % info about IPC object of given id

One can also use file interface (see namespaces(7)):
/proc/sysvipc/msg, /proc/sysvipc/sem, /proc/sysvipc/shm

Removal of System V IPC objects with system command ipcrm requires the
object identifier id or key :

ipcrm {msg | sem | shm } id % removal of specific type of IPC object
ipcrm[-g|-s|-m] id % the same.
ipcrm [-Q | -S| -M] key % the same but with key not id

o4 L.J. Opalski, slides for Operating Systems course

Unix System V IPC objects — access rights

For each IPC object the kernel creates and maintains the following structure
(see <sysl/ipc.h>, svipc(7)) with access rights to the object:

struct ipc perm {
uid t uid; /* UID id of the owner */
gid t gid; /* GID id of the owner group */
uid t cuid; /* UID id of the object creator (user id) */
gid t cgid; /* GID id of the object creator group */
mode t mode; /* access rights (RWXRWXRWX) */

ulong t seq; /* (SVR4) sequence number, incremented after
each destruction of an object with given key */

key t key; /* key */
}s
Access rights are checked prior to each operation involving IPC object.

o5 L.J. Opalski, slides for Operating Systems course

Creation and opening access to IPC objects

The following describes generic format of functions which enable IPC object
creation and opening access:

int XXXget(key t key, /* sz, */ int oflag)
XXX is substituted by
msg - for message queues
shm - for shared memory (parameter size t sz is needed than)
sem - for semaphores (parameter int sz is needed than)

oflag is a bit OR of patterns that determine access rights (RW-RW-RW-) and
IPC_CREAT, possibly IPC_EXCL

The function returns integral object id, which is subsequently used for operations
involving the object. The id is unique within a type of IPC objects (msg, shm,
sem).

Note: If key takes the special value IPC_PRIVATE than a new IPC object is
created and such, that no combination of pathname and id parameters in
ftok() call is able to create the special value: IPC_PRIVATE.

26 L.J. Opalski, slides for Operating Systems course

Creation and opening access to IPC objects

Results of XXXget() function calls depend on the parameter oflag as
shown below. Success of the attempt depends also on access rights,
obviously.

Parameter oflag IPC object with given key | IPC object with given
does not exists key already exists

No IPC_CREAT Error, errno==ENOENT | OK, the object with

and no IPC_EXCL given key is subject to

bit patterns opening access
operation

IPC_CREAT OK, new object may be | as above

bit pattern set created

(IPC_CREAT | OK, new object may be | Error, errno==EEXIST

IPC_EXCL) created

bit pattern set

27 L.J. Opalski, slides for Operating Systems course

Unix System V IPC — message queues

" Messages are represented with structures of the following form:
struct msgbuf {
long mtype; /* positive (>0) message type */
char mtext[1l];/* message content length (>=0) (here:1)*/

}

Maximum message length (MSGMAX) is the operating system configurable value.
" The open message queue is represented by a identifier of int.type.

" The message queue has maximum capacity MSGMNB that is system configurable.
When a process thread attempts to overflow the queue — is blocked (when performs
message send in default blocking mode).

® Message are guaranteed to keep integrity, even though the messages can be of
different sizes..

® Message retrieval blocks the process thread (if attempt is made in the default
blocking mode) when the requested message is not found (e.g. queue is empty).

® The maximum number of queues (MSGMNI) is operating system configurable

Note: file interface is available for (MSGMAX, MSGMNB, MSGMNI) via msgmax,
msgmnb, msgmni entries in the /proc/kernel directory

o8 L.J. Opalski, slides for Operating Systems course

Sending messages

int msgsnd(int msqgid, struct msgbuf *ptr,
size t len, int flaqg);

The function attempts to send the message of length len stored at address
ptr to the message queue identified with msqid id. When successful the
function returns O (-1 in case of error with global variable errno set to an
numeric error code).

flag if 0 => the function blocks when there is not enough space
for the message in the queue
flag equal to IPC_NOWAIT => the function returns error (errno==EAGAIN),
when there is not enough space for the message in the queue

Remarks:
" msgsnd does not interpret the message structure (besides mtype)

" len specifies size of data part of the struct msgbuf, i.e. should be equal to
sizeof(msgbuf) — sizeof(long) ; len can be 0.

® Message type (mtype) makes possible to link all messages of the same
type in a list (FIFO order); the message queue creates also a list of all
messages (FIFO order).

29 L.J. Opalski, slides for Operating Systems course

Message retrieval

int msgrcv(int msqid, struct msgbuf *ptr,
size t len, long type, int flag);
The function retrieves a message of maximum length (of data part) equal to len
into a buffer pointed at by ptr from a message queue with identifier msqid.
On success the message is removed from the queue and O is returned.—1 is

returned in case of error with global variable errno set to an numeric error
code). By default the function blocks if no requested message is found.

type == 0 => the function retrieves the oldest message

type >0 => the function retrieves the oldest message of specified type; if also
(flag & MSG_EXCEPT) is not zero then the function retrieves the oldest
message of type that is different from type

type<0 => the function retrieves the oldest message of type <= |type|
flag o wartosci 0 => funkcja blokuje, jesli brak zgdanego komunikatu

(flag & IPC_NOWAIT)!=0 => the function fails with errno==ENOMSG if no
requested message is in the queue

(flag & MSG_NOERROR)!=0 => the function truncates too long message
(normally failure is accompanied with errno==E2BIG.

30 L.J. Opalski, slides for Operating Systems course

Control operations

int msgctl (int msqid, int cmd, struct msqid ds *buf);
The following commands (cmd) can be issued for a message queue with given id (msqid):

IPC_RMID - the queue is destroyed immediately (the messages are lost)

IPC_SET — sets new parameters of the queue, 4 fields of the structure msqgid_ds are modified:
msg_perm.uid, msg_perm.gid, msg_perm.mode, msg_gbytes, also msg_ctime is
updated. The command can be only performed for processes which EUID is equal: 0,

msg_perm.cuid or msg_perm.uid
IPC_STAT — copies to the structure pointed at by buf current parameters of the queue

struct msqid ds contains the following fields (among others):

struct ipc perm msg perm; /* access rights */
struct msg *msg first, *msg last; /* ptrs to msg lists */

msglen t msg cbytes; /* current nr of bytes used */
msggnum_t msg_qnum; /* current nr of messages*/
msglen t msg gbytes; /* max. nr of messages in the queue */

pid t msg lspid, msg lrpid; /* PID of the most recent process that
called msgsnd () ,msgrcv () */
time_t msg stime, msg rtime, msg ctime; /* time-stamp of the
the most recent call of msgsnd(), msgrcv (), msgctl() */

31 L.J. Opalski, slides for Operating Systems course

Example fragments (msendl/mrecvl)

Sender (msendl.c)

Reader (mrecvl.c)

int queue, 1i; packet pl;
if ((queue = msgget (QUEKEY,
IPC CREAT| S IRUSR| S IWUSR]
S IRGRP|S IWGRP))<0) {
/* error */
}
pl.mtype=1;
for(i = 0 ; 1 < 10; 1i++){
snprintf (pl.mtext, TXTSZ,
"Packet %d\n”,1i)
1f(TEMP FAILURE RETRY (
msgsnd (queue , &pl, TXTSZ,
0))<0){
/* error */
}
sleep(1l);
}/* for() */
sleep(5);/* wait for reader */

if (msgctl (queue ,IPC RMID,NULL)<0) {

/* error handling */

b

int queue; packet pl;
if ((queue = msgget (QUEKEY,
IPC CREAT|S IRUSR|S IWUSR]
S IRGRP|S IWGRP))<0) {
/* error */
}
for (;;){
if(TEMP_FAILURE_RETRY(
msgrcv (queue , & pl, TXTSZ,
1,0))<0)
break;
printf ("%s", pl.mtext);
}

if (errno) perror ("mrecvl error");

#define QUEKEY O0x00FFO0O0
#define TXTSZ 80
typedef struct {

long mtype;

char mtext [TXTSZ];

} packet;

32

L.J. Opalski, slides for Operating Systems course

Unix System V IPC - shared memory
int shmget(key t key, size t len, int oflaq);

It creates new or opens existing shared memory segment of size len and key key.
oflag contains bit OR-ed value of access rights and possibly IPC_CREAT,
IPC_EXCL. The segment is zeroed. When successful the function returns shared
memory identifier and —1on failure.

void * shmat (int shmid, const void *addr, int flag);

It attaches the shared memory segment specified with the identifier shmid to the
address space of the calling process. Ptr to the beginning of the memory segment is
returned on success; otherwise -1.

addr == 0 => segment location is selected by the kernel

addr '= 0 => suggested address of the segment in the process space; if also (flag &
SHM_RND) !'=0 => address is rounded to a multiple of the virtual memory page size.

Segment is attached in read-only mode when (flag&SHM_ RDONLY)!=0, otherwise the
access mode is read-write..

int shmdt (const void *shmaddr) ;

Detaches the segment located at address shmaddr from address space of the
process. Note that the segment is not removed from the system — unless it has been
marked for removal and there is no process currently attached to the segment.

L.J. Opalski, slides for Operating Systems course

33

Control operations

int shmctl (int shmid, int cmd, struct shmid ds *buf) ;

Available commands (cmd) for a shared memory segment with given id (shmid):

IPC_RMID — marks the segment for removal (it will be removed when no process
attaches it or the system is closed). A segment can be marked by a process
with EUID==0, the created or the owner — as determined by shm_perm.cuid
and shm_perm.uid fields in the info structure shmid_ds of the segment.

IPC_SET —replaces values of shm_perm.uid, shm_perm.gid,
shm_perm.mode fields of the info structure shmid_ds with values from the
structure pointed at by buf

These operations can be performed by a process with EUID equal to O,
shm_perm.cuid or shm_perm.uid (see struct shmid_ds)

IPC_STAT — stores the content of the info structure shmid_ds of the specified
segment to the structure pointed at by buf

34 L.J. Opalski, slides for Operating Systems course

The info structure of shared memory segments

struct shmid ds. {
struct ipc perm shm perm; /* access rights structure */
size t shm segsz; /* segment size in bytes */
pid tshm 1lpid; /* PID of last shmat () /smdt () */
pid tshm cpid; /* PID of creator */
shmat t shm nattch; /* nr of current attaches */
time t shm atime; /* last attach time */
time t shm dtime; /* last detach time */

time t shm ctime; /* last change time */

};

35 L.J. Opalski, slides for Operating Systems course

Example of shared memory segment use

key t key; int shmid; char *segptr; /* variables declared */

key = ftok(".", ‘A'); /* key generation */

1f ((shmid = shmget (key , SEGSIZE, IPC CREAT|IPC EXCL|0666)) == -1) {
i1f (errno==EEXIST) {

printf (“Shared memory segment exists\n");

if ((shmid = shmget(key , SEGSIZE, 0)) == -1){/* error */
} else {/* error*/ ... }
} else {

/* here some initialization of the segment might be done */
}
/* Attachment of the segment to the process address space */
1 ((= (char *)shmat (shmid , 0, 0)) == (char *)-1) {
/* attach error*/
} else printf (“shared memory segment has been attached\n”);
/* Here segment use might occur, in the form of references to
[0, ... [SEGSIZE-1]
*/

shmdt (); /* Segment detach after use */

36 L.J. Opalski, slides for Operating Systems course

Effects of some system calls on IPC objects

Sys.V msg Does not matter Does not matter Does not matter

POSIX MQ Child inherits open Descriptors are Descriptors are
descriptors closed closed

Sys V shm Segments are Segments are Segments are
attached to the child detached detached

address space

POSIX shm Child keeps memory Mapping removed Mapping removed

mapping
Memory Child keeps memory Mapping removed Mapping removed
mapping with mapping

mmap()

37 L.J. Opalski, slides for Operating Systems course

