kacza POSIX (i nie tylko)

Ostatnia modyfikacja: 18.02.2019

POSIX

" FIFO special file (or FIFO)

,A type of file with the property that data written to such a file is read on a
first-in-first-out” basis.

" Pipe

,An object accessed by one of the pair of file descriptors created by the
pipe() function. Once created, the file descriptors can be used to
manipulate it, and it behaves identically to a FIFO special file when
accessed in this way. It has no hame in the file hierarchy.”

Symbole zwigzane z FIFO/pipe

Header file Symbols

<errno.h> EPIPE, ESPIPE
<limits.h>, <unistd.h> PIPE_BUF
<signal.h> SIGPIPE
<sys/stat.h> S_ISFIFO(m)

Last modification date: 25.10.2015 2 Slajdy do wyktadu ,Systemy operacyjne 2

kacza

® ¥ 3cze tworzy kanat komunikacji pomiedzy dwoma procesami

® Kwestie podstawowe:
= Potgczenie jedno- czy dwukierunkowe?
= Half-duplex (przemiennosc¢ kierunkdéw komunikaciji), czy full-
duplex?
= Czy wymagana jest jakas specjalna relacja (n.p. rodzic-potomek)
pomiedzy procesami?
= Czy tgcze moze byC uzyte do komunikacji zdalnej (przez siec¢)?
® ¥ 3cza zwykle (anonimowe) — po utworzeniu przez proces nie sg

widoczne przez inne procesy. Dostep moze byc¢ jednak przekazywany
(np. procesom potomnym).

® Lacza nazwane — mogg by¢ udostepniane kazdemu procesowi dzieki
nazwie.

L.J. Opalski, slajdy do wyktadu MiNI ,Systemy Operacyjne 2” 3 Slajdy do wyktadu ,Systemy operacyjne 2”

Komunikacja producent-konsument

" Zwykte tgcza umozliwiajg realizacje relacji producent-konsument.
" Producent zapisuje dane z jednego konca tagcza (the write-end of the pipe)
" Konsument odczytuje dane z drugiego konca tgcza (the read-end of the pipe)

parent child
fd[O] fd[1] fd[O] fd[1]

LT)-

" Zwykte fgcza sg zazwyczaj jednokierunkowe (POSIX: tak, Windows: tak,
UNIX z podsystemem STREAMS: niekoniecznie)

" Wymagane jest przekazanie deskryptorow zwigzanych z koncami tgcza:
* Proces potomka moze odziedziczy¢ deskryptory procesu rodzica

= W systemach UNIX mozliwe jest przekazania deskryptorow za pomocg
gniazd lokalnych (sockets).

L.J. Opalski, slajdy do wyktadu MiNI ,Systemy Operacyjne 2” 4 Slajdy do wyktadu ,Systemy operacyjne 2”

UNIX/Posix - tworzenie tgcza anonimowego

#include <unistd.h>
int ret=pipe (int filedes[2])

tworzy jednokierunkowe tgcze (pipe), zwracajgc deskryptora otwartego do
odczytu do filedes[0] a deskryptora otwartego do zapisu do filedes[1]

W przypadku powodzenia ret==0, inaczej ret==-1 (kod btedu w errno).
Przyktad tworzenia i trywialnego wykorzystania tgcza

User process char buf[16];
int fd[2], ret;

if(pipe (fd)<0){ perror("pipe”); exit(1); }

if((ret=write (fd[1],"text”,5)<5)
perror(”)write”); exit(2);

}

> if((ret=read (fd[0],buf, sizeof(buf))<0){
perror(”)read”); exit(3);
} i
write(1,buf,ret);

kernel

Slajdy do wyktadu ,Systemy operacyjne 2”

UNIX/POSIX: tacze i fork()

fork() udostepnia deskryptory tgcza procesowi potomnemu,
umozliwiajgc komunikacje rodzic-potomek

File descriptor table

File descriptor table ~ of achild of process

of process A open file table I-node table

Counter
2 (PIPE)

W N PO
>

Slajdy do wyktadu ,Systemy operacyjne 2”

IPC za pomoca tgcza anonimowego - 1

Przyktad. Proces rodzica wysyta dane do procesu potomnego (write() / read()).

. . . parent child
1int main (void) { fd[0] fd[1] fd[0] fd[1]

(
char buf[l6];

|
int fd[2], pid, ret; ™
if (pipe (fd)<0) {/* error hai ((j
if((pid=fork()) == -1){ /* error handling */ }
else if (pid>0){ /* rodzic */
close (fd[0]); /* zamykanie nieuzywanego konhca ltacza */
if((ret=write (fd[1l],”Text”,5)<5){/* error */}
/* waiting for child process */
if(wait (NULL)<0){ /* error handling */ }
} else { /* potomek */
close (fd[1l]); /* zamykanie nieuzywanego konhca ltacza */
1f((ret=read (fd[0],buf, sizeof (buf))<0){{/* error */}
write(l,buf, ret); parent child
) fd[0] fd[1] 0] fd[1]
return EXIT SUCCESS; E

| =

Slajdy do wyktadu ,Systemy operacyjne 2”

IPC za pomoca tagcza anonimowego - 2

Przyktad. Proces rodzica wysyta dane do procesu potomnego (przez strumien).

parent child
fd[0] fd[1] fd[O] fd[1]

int main (void) { I |
int f£d[2], ret; ‘J
pid_t pid; "({—pre—— ()

" X

FILE *stream;
if(pipe(fd)<0) {/* error handling */ }
if((pid=fork()) == -1){ /* error handling */ }
else if (pid>0){ /* rodzic */
close (fd[0]); /* zamykanie nieuzywanego konca tacza */
stream=fdopen (fd[1],"w"”) ;
fprintf (stream, "Message ..”);
fclose (stream) ;
if(wait (NULL)<0){ /* error handling */ }
} else {/* potomek */
close (fd[1]); /* zamykanie nieuzywanego konca tacza */
stream =fdopen (fd[0],"r”);

while ((ret=fgetc(stream)) != EOF)
putchar (ret) ; mel,”%m Sveuin "mm
fclose (stream) ; fd[0] fd[1] fd0] fd[1]
} ﬂ

return EXIT SUCCESS;

| C)2

kacza - c.d.

Wiasnosci tgcza anonimowego:

Dostep do tgcza — tylko poprzez deskryptory (dziedziczone od procesu-
tworcy tagcza).

t acze nie wspiera pozycjonowania. Proba odczytu/ustawienia pozycji
konhczy sie niepowodzeniem z errno=ESPIPE (invalid seek)

Proba zapisu do zamknietego tgcza ustawia kod btedu errno=EPIPE
(broken pipe); wysytany jest tez sygnat SIGPIPE do procesu, ktory
podjat probe.

t acze ma ograniczong pojemnosc¢ (PIPE_BUF >=512B)

t gcze przechowuje sekwencje bajtéow. Nie ma znacznikow konca
rekordow logicznych.

Odczyt z/zapis do tgcza jest nierozdzielny (atomic) jesli rozmiar danych
jest nie wiekszy niz PIPE_BUF. Jesli blok danych o rozmiarze <=
PIPE_BUF przepetnia tgcze — proces zapisu jest wstrzymywany — az do
uzyskania odpowiednio duzego wolnego miejsca w tgczu. Bloki danych
dtuzsze niz PIPE_BUF sg przesytane we fragmentach.

Kiedy wszystkie deskryptory zwigzane z tgczem zostang zamkniete
dane pozostate w tgczu ging (facze tez).

Slajdy do wyktadu ,Systemy operacyjne 2”

tacza POSIX/UNIX- cd.

#include <stdio.h>

FILE * fp=popen (const char *cmd, const char *mode)

Tworzy podproces (przy pomocy komendy powtoki: cmd) . Jezeli mode, to:
", r’ —wowczas fp jest strumieniem potgczonym z stdout podprocesu

", w” —wowczas fp jest strumieniem potgczonym z stdin podprocesu

int pclose(FILE *fp)

Zamyka dostep do strumienia utworzonego przez wywotanie funkcji
popen(), czeka na zakonczenie komendy powtoki (wykonywanej w
podprocesie) i zwraca kod wyjscia podprocesu. Szczegodty: man pclose.

10 Slajdy do wyktadu ,Systemy operacyjne 2”

Przykiad uzycia popen()

/* cmdlog.c — Wykonuje podane polecenie (emd), duplikujac
standardowe wyjsécie (plik log) */
#include <stdio.h>
#include <stdlib.h>
int main(int argc, char *argv([]) {
char buf[BUFSIZ];
FILE *fpl, *fp2;
size t n;
1f (argc!=3) {
fprintf (stderr,"Usage: cmdlog 1log cmd"); exit(l);
}
if ((fpl=fopen (argv[1l],"w"))==NULL){ /* error */... }
if ((fp2=popen (argv[2],"r"))==NULL){ /* error */...}

while ((n=fread (buf,sizeof (char),sizeof (buf), fp2))>0) {

if (fwrite (buf,sizeof (char),n, fpl) !=n){/* error */...}
if (fwrite (buf, sizeof (char),n, stdout) !=n) {/* error */..}
}
(void) pclose(fp2); (void) fclose(fpl);

return 0O;

} 11 Slajdy do wyktadu ,Systemy operacyjne 2”

FIFO (tacze nazwane)

FIFO — typ pliku specjalnego, charakteryzujgcego sie tym, ze sekwencja
zapisanych bajtéw jest odczytana w kolejnosci zapisu (,in the first-in-first-out
order”).

#include <sys/types.h>

#include <sys.stat.h>

int mkfifo(const char *path, mode t mode);

Tworzy wpis w systemie pliku typu FIFO. Lokalizacje FIFO okresla sciezka
(wzgledna lub bezwzgledna) path, mode okresla prawa dostepu (jak przy

wywotaniu open()).

FIFO moze byC wykorzystane do komunikacji jednokierunkowej tak samo jak
tacze anonimowe, jesli tylko zostanie otwarte zaréwno do odczytu jak i do zapisu.

Jedno tgcze moze by¢ wykorzystane przez wiecej niz dwa procesy (np. dwéch
nadawcow i jeden odbiorca komunikatéw). Do komunikacji potrzebny jest
przynajmniej jeden nadawca komunikatow (deskryptor z prawami zapisu) i jeden
odbiorca (deskryptor z prawami odczytu).

Uwaga: Typowo jeden proces otwiera tgcze do zapisu, a inny do odczytu.
Domyslinie operacje otwarcia dostepu sg blokujgce; funkcje open blokujg
wotajgce watki az fgcze nie zostanie otwarte do odczytu oraz do zapisu.

1 Slajdy do wyktadu ,Systemy operacyjne 2”

Przyktad uzycia FIFO

/* fifosv.c : MYFIFO -> stdout*/ :/* fifocl.c : stdin -> MYFIFO */
I
#define FIFO FILE "MYFIFO" :#define FIFO FILE "MYFIFO“
int main (void) { void handler (int siqg) {
char buf[80]; fputs ("SIGPIPE\n", stderr); return;
int f£fd, m, n;
unlink(FIFO_FILE);
umask (0) ;
if (mkfifo (FIFO FILE, 0666)){. .}
if ((fd=open (FIFO FILE,O RDONLY)) <O0) {

}
int main(int argc, char*argv[]) {
char buf[80];// what if 80007
int £d, m, n;
signal (SIGPIPE, handler); /* © */
if ((fd=open (FIFO FILE,O WRONLY))<O0){.}

} while ((n=read (0,buf,80))>0) {

while ((n=read (fd,buf, 80)) >0) { if((m=write (fd,buf,n))!=n) {..
1f ((m=write(l,buf,n)) !=n) { } else {
} else { fprintf (stderr,
““““ fprintf (stderr, "%d B read\n”,n); "$d B to FIFO\n",m);

}
} /* while () */
1f (n==0) {
: fputs ("EOD\n", stderr); return O;

}
}/* while () */
if (n==0) fputs ("EOD\n", stderr) ;
else {
if (errno==EINTR)
fputs ("EINTR\n", stderr) ;
else perror ("fifocl");

}

if (errno) perror(,fifosv”);
return 0;

}

return 0;

}

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
: Slajdy do wyktadu ,Systemy operacyjne 2”
|

13

Niebezpieczenstwo blokady przy otwieraniu FIFO

Nieprzemyslane rozpoczynanie dwukierunkowej komunikacji za pomocg dwoch
FIFO moze skutkowac blokadg procesow. Przyktad:

/* progl.c */ /* prog2.c */

int main(void) {
int f£dl, £f£d2;

int main(void) {
int f£dl, £f£d2;

if ((fdl=open ("F12”,0 RDONLY)) <0) {

if ((fdl=open (“F21”,0 RDONLY)) <0) {
: error ("open") ; return 1;

perror ("open") ;
}
if ((fd2=open ("F12”,0 WRONLY)) <0) {

perror ("open") ; return 1;

}
if ((fd2=open ("F21”,0 WRONLY)) <0) {
perror ("open'") ; return 1;

|

|

|

|

|

) |
/* code which i1s to read from fdl |
|

|

|

|

|

|

|

|

~

* code which is to read from fdl

* and to write to fd2 */ * and to write to fd2 */

return 0;

}

14 Slajdy do wyktadu ,Systemy operacyjne 2”

Nieblokujace uzycie FIFO

POSIX: wywotanie funkcji open

® Jesli ustawiono sygnalizatory O NONBLOCK i O RDONLY, to funkcja open natychmiast
powraca, zwracajgc -1 przy niepowodzeniu (inaczej numer deskryptora >=0).

" Jesli ustawiono sygnalizator O NONBLOCK i O_ WRONLY funkcja open sygnalizuje btad
jesli tgcze nie jest otwierane do odczytu przez (inny) watek/proces.

" Domyslnie sygnalizator O NONBLOCK nie jest ustawiony; wywotanie funkcji open

= dla trybu tylko do odczytu (O_RDONLY) blokuje wotajgcy watek az tgcze zostanie
otwarte do zapisu przez inny watek.

= dla trybu tylko do zapisu (O_WRONLY) blokuje wotajgcy watek az tgcze zostanie
otwarte do odczytu przez inny watek/proces.”

Przyktad: uzycia O NONBLOCK dla unikniecia blokady przy otwieraniu FIFO.
for (i=0; 1<20; i++){/* try 20 times (polling)*/
fd = open (pname, O RDONLY|O NONBLOCK) ; /* returns -1 if failed */
if (fd!'=-1) break;
1f (errno!=ENXIO) {

perror ("opening FIFO"); exit(1l);
} else {
printf ("waiting for a client"); sleep(2);

}

- Slajdy do wyktadu ,Systemy operacyjne 2”

Nieblokujace uzycie FIFO - cd.

POSIX: Proba zapisu do facza za pomocg funkcji write przy ustawionym
sygnalizatorze O NONBLOCK

" Wywotanie write nie blokuje

" Proba zapisu co najwyzej {PIPE_BUF} bajtobw danych ma nastepujgce skutki:
= Jesli jest wystarczajgco duzo wolnego miejsca w tgczu — funkcja write
zapisze wszystkie dane do (bufora) tgcza i zwrdci liczbe zapisanych
bajtow.
= W przeciwnym przypadku funkcja write nie zapisuje danych w tgczu,
zwraca =1 ustawiajgc zmienng errno na [EAGAIN].

" Proba zapisu wiecej niz {PIPE_BUF} bajtow danych ma nastepujgce skutki:
= Jesli przynajmniej jeden bajt moze by¢ zapisany do tgcza — zapis jest
zrealizowany, a funkcja write zwraca liczbe zapisanych danych.

= W przeciwnym przypadku funkcja write nie zapisuje danych w tgczu,
zwraca =1 ustawiajgc zmienng errno na [EAGAIN].

16 Slajdy do wyktadu ,Systemy operacyjne 2”

Zapis do facza - podsumowanie

Write to a Pipe or FIFO with O_NONBLOCK clear

Immediately Writable:

None

nbyte

nbyte<{PIPE_BUF}

Atomic blocking
nbyte

Atomic blocking

Atomic immediate
nbyte

nbyte>{PIPE_BUF}

Blocking nbyte

Blocking nbyte

Blocking nbyte

Write to a Pipe or FIFO with O_NONBLOCK set

Immediately Writable:

None

Some nbyte

nbyte<{PIPE_BUF|

—1, [EAGAIN]

—1, [EAGAIN]

Atomic nbyte

nbyte>{PIPE_BUF}

—1, [EAGAIN]

<nbyte or -1,
[EAGAIN]

<nbyte or -1,
[EAGAIN]

17

Slajdy do wyktadu ,Systemy operacyjne 2”

Nieblokujace uzycie FIFO - cd.

POSIX: Wywotanie funkcji read dla pustego tgcza (nazwanego lub anonimowego):

® Jesli zaden proces nie ma tgcza otwartego do zapisu funkcja read zwraca
wartosc¢ 0, co oznacza koniec danych (end-of-file).

® Jesli jakis proces ma tgcze otwarte do zapisu:

= Jesli ustawiono sygnalizator O NONBLOCK, to read zwraca =1 ustawiajgc
zmienng errno na [EAGAIN].

= Jesli sygnalizator O NONBLOCK jest wyzerowany (stan domysiny), to read

blokuje wotajgcy watek az w fgczu pojawig sie dane, albo wszystkie dostepy
do tgcza w trybie zapisu zostang zamkniete.

Uwaaqi:
Funkcja_read moze zwrocic O
" W trybie blokujgcym - jesli napotkano koniec danych

" W trybie nieblokujgcym (ustawione O NONBLOCK) gdy tgcze jest (tymczasowo)
puste lub zaden proces nie jest potgczony z tym tgczem do zapisu. Koniec
danych musi by¢ rozpoznany przez zawartosS¢ strumienia danych.

18 Slajdy do wyktadu ,Systemy operacyjne 2”

Wiaczanie/wytaczanie blokujacego
trybu obstugi wejscia/wyjscia

#include <fcntl.h>
int set nonblock flag (int desc, int wvalue) {
/* Set the O NONBLOCK flag of desc file descriptor,
if value is nonzero,
or clear the flag if wvalue is 0.
Return 0 on success, or -1 on error with errno set.
Source: glibc documentation.
*/
int oldflags = fcntl (desc, F GETFL, 0);
/* If reading the flags failed, return error indication */
1f (oldflags == -1)
return -1;
/* Set just the flag we want to set. */
1f (value !'= 0)
oldflags |= O NONBLOCK;
else
oldflags &= ~O NONBLOCK;
/* Store modified flag word in the descriptor. */
return fcntl (desc, F SETFL, oldflags);

19 Slajdy do wyktadu ,Systemy operacyjne 2”

kacza w MS Win

" ¥t 3cza anonimowe mogg stuzyc¢ jedynie do komunikacji lokalne.

" W MS Windows tacza nazwane mogg stuzy¢ do komunikacji
jednostronnej bgdz dwukierunkowej (duplex) pomiedzy procesem
serwera tgcza (tworzgcym tgcze) oraz procesami klientow tgcza.
Komunikacja moze byc¢ lokalna, bgdz pomiedzy procesami na roéznych
komputerach. Lgcza sg nazywane przez sciezki UNC (Universal Naming
Convention), np.

\\myhost\pipe\mypipe wskazuje tgcze mypipe na komputerze myhost

" Instancje tgcza nazwanego wspotdzielg jedynie nazwe; dzieki temu wielu
klientow tgcza moze niezaleznie komunikowac sie z serwerem tgcza.

® ¥ 3cza moga przenosic strumienie bajtow badz komunikatow.

Uwaga: w systemie Linux (>=3.4) istnieje tryb pakietowy dla tgcz
anonimowych (man pipe), ktéry mozna uzy¢ do przesytania komunikatow o
zmiennej dtugosci. Jesli wywotanie funkcji write() zapisze n<=PIPE_BUF
bajtéw do tgcza — tworzy pakiet. Wywotanie funkcje read() moze odczytac
caty ten pakiet (i tylko ten pakiet), uzywajgc odpowiednio duzego bufora (o
dtugosci >=n).

20 Slajdy do wyktadu ,Systemy operacyjne 2”

