
1

Łącza POSIX (i nie tylko)

Ostatnia modyfikacja: 18.02.2019

2
Slajdy do wykładu „Systemy operacyjne 2”

POSIX

▪ FIFO special file (or FIFO)

„A type of file with the property that data written to such a file is read on a

first-in-first-out” basis.

▪ Pipe

„An object accessed by one of the pair of file descriptors created by the

pipe() function. Once created, the file descriptors can be used to

manipulate it, and it behaves identically to a FIFO special file when

accessed in this way. It has no name in the file hierarchy.”

Symbole związane z FIFO/pipe

Last modification date: 25.10.2015

Header file Symbols

<errno.h>

<limits.h>, <unistd.h>

<signal.h>

<sys/stat.h>

EPIPE, ESPIPE

PIPE_BUF

SIGPIPE

S_ISFIFO(m)

3
Slajdy do wykładu „Systemy operacyjne 2”

Łącza

▪ Łącze tworzy kanał komunikacji pomiędzy dwoma procesami

▪ Kwestie podstawowe:

▪ Połączenie jedno- czy dwukierunkowe?

▪ Half-duplex (przemienność kierunków komunikacji), czy full-

duplex?

▪ Czy wymagana jest jakaś specjalna relacja (n.p. rodzic-potomek)

pomiędzy procesami?

▪ Czy łącze może być użyte do komunikacji zdalnej (przez sieć)?

▪ Łącza zwykłe (anonimowe) – po utworzeniu przez proces nie są

widoczne przez inne procesy. Dostęp może być jednak przekazywany

(np. procesom potomnym).

▪ Łącza nazwane – mogą być udostępniane każdemu procesowi dzięki

nazwie.

L.J. Opalski, slajdy do wykładu MiNI „Systemy Operacyjne 2”

4
Slajdy do wykładu „Systemy operacyjne 2”

Komunikacja producent-konsument
▪ Zwykłe łącza umożliwiają realizację relacji producent-konsument.

▪ Producent zapisuje dane z jednego końca łącza (the write-end of the pipe)

▪ Konsument odczytuje dane z drugiego końca łącza (the read-end of the pipe)

▪ Zwykłe łącza są zazwyczaj jednokierunkowe (POSIX: tak, Windows: tak,

UNIX z podsystemem STREAMS: niekoniecznie)

▪ Wymagane jest przekazanie deskryptorów związanych z końcami łącza:

▪ Proces potomka może odziedziczyć deskryptory procesu rodzica

▪ W systemach UNIX możliwe jest przekazania deskryptorów za pomocą

gniazd lokalnych (sockets).

L.J. Opalski, slajdy do wykładu MiNI „Systemy Operacyjne 2”

5
Slajdy do wykładu „Systemy operacyjne 2”

UNIX/Posix - tworzenie łącza anonimowego

#include <unistd.h>

int ret=pipe (int filedes[2])

tworzy jednokierunkowe łącze (pipe), zwracając deskryptora otwartego do
odczytu do filedes[0] a deskryptora otwartego do zapisu do filedes[1]

W przypadku powodzenia ret==0, inaczej ret==-1 (kod błędu w errno).

Przykład tworzenia i trywialnego wykorzystania łącza

User process char buf[16];

int fd[2], ret;

if(pipe (fd)<0){ perror(”pipe”); exit(1); }
if((ret=write (fd[1],”text”,5)<5){

perror(”)write”); exit(2);

}

if((ret=read (fd[0],buf, sizeof(buf))<0){

perror(”)read”); exit(3);

}

write(1,buf,ret);

\0txet ---->
kernel

pipe

6
Slajdy do wykładu „Systemy operacyjne 2”

UNIX/POSIX: łącze i fork()

fork() udostępnia deskryptory łącza procesowi potomnemu,
umożliwiając komunikację rodzic-potomek

tablica i- węzłów

open file table

Counter

2 (PIPE)

0

1

2

3

4

5

6

7

8

File descriptor table

of process A

Counter

2 WRONLY

Counter

2 RDONLY

File descriptor table

of a child of process

A i-node table-

7
Slajdy do wykładu „Systemy operacyjne 2”

IPC za pomocą łącza anonimowego - 1

Przykład. Proces rodzica wysyła dane do procesu potomnego (write() / read()).
. . .

int main(void){

char buf[16];

int fd[2], pid, ret;

if(pipe(fd)<0){/* error handling */ }

if((pid=fork()) == –1){ /* error handling */ }

else if(pid>0){ /* rodzic */

close(fd[0]); /* zamykanie nieużywanego końca łącza */

if((ret=write(fd[1],”Text”,5)<5){/* error */}

/* waiting for child process */

if(wait(NULL)<0){ /* error handling */ }

} else { /* potomek */

close(fd[1]); /* zamykanie nieużywanego końca łącza */

if((ret=read(fd[0],buf, sizeof(buf))<0){{/* error */}

write(1,buf,ret);

}

return EXIT_SUCCESS;

}

8
Slajdy do wykładu „Systemy operacyjne 2”

IPC za pomocą łącza anonimowego - 2

Przykład. Proces rodzica wysyła dane do procesu potomnego (przez strumień).

...

int main(void){

int fd[2], ret;

pid_t pid;

FILE *stream;

if(pipe(fd)<0){/* error handling */ }

if((pid=fork()) == –1){ /* error handling */ }

else if(pid>0){ /* rodzic */

close(fd[0]); /* zamykanie nieużywanego końca łącza */

stream=fdopen(fd[1],”w”);

fprintf(stream,”Message …”);

fclose(stream);

if(wait(NULL)<0){ /* error handling */ }

} else {/* potomek */

close(fd[1]); /* zamykanie nieużywanego końca łącza */

stream =fdopen(fd[0],”r”);

while((ret=fgetc(stream)) != EOF)

putchar(ret);

fclose(stream);

}

return EXIT_SUCCESS;

}

9
Slajdy do wykładu „Systemy operacyjne 2”

Łącza – c.d.

Własności łącza anonimowego:

▪ Dostęp do łącza – tylko poprzez deskryptory (dziedziczone od procesu-

twórcy łącza).

▪ Łącze nie wspiera pozycjonowania. Próba odczytu/ustawienia pozycji

kończy się niepowodzeniem z errno=ESPIPE (invalid seek)

▪ Próba zapisu do zamkniętego łącza ustawia kod błędu errno=EPIPE

(broken pipe); wysyłany jest też sygnał SIGPIPE do procesu, który

podjął próbę.

▪ Łącze ma ograniczoną pojemność (PIPE_BUF >=512B)

▪ Łącze przechowuje sekwencję bajtów. Nie ma znaczników końca

rekordów logicznych.

▪ Odczyt z/zapis do łącza jest nierozdzielny (atomic) jeśli rozmiar danych

jest nie większy niż PIPE_BUF. Jeśli blok danych o rozmiarze <=

PIPE_BUF przepełnia łącze – proces zapisu jest wstrzymywany – aż do

uzyskania odpowiednio dużego wolnego miejsca w łączu. Bloki danych

dłuższe niż PIPE_BUF są przesyłane we fragmentach.

▪ Kiedy wszystkie deskryptory związane z łączem zostaną zamknięte

dane pozostałe w łączu giną (łącze też).

10
Slajdy do wykładu „Systemy operacyjne 2”

Łącza POSIX/UNIX– cd.

#include <stdio.h>

FILE * fp=popen (const char *cmd, const char *mode)

Tworzy podproces (przy pomocy komendy powłoki: cmd) . Jeżeli mode, to:

▪ „r” – wówczas fp jest strumieniem połączonym z stdout podprocesu

▪ „w” – wówczas fp jest strumieniem połączonym z stdin podprocesu

int pclose(FILE *fp)

Zamyka dostęp do strumienia utworzonego przez wywołanie funkcji

popen(), czeka na zakończenie komendy powłoki (wykonywanej w

podprocesie) i zwraca kod wyjścia podprocesu. Szczegóły: man pclose.

11
Slajdy do wykładu „Systemy operacyjne 2”

Przykład użycia popen()

/* cmdlog.c – Wykonuje podane polecenie (cmd), duplikując

standardowe wyjście (plik log) */

#include <stdio.h>

#include <stdlib.h>

int main(int argc, char *argv[]){

char buf[BUFSIZ];

FILE *fp1, *fp2;

size_t n;

if(argc!=3){

fprintf(stderr,"Usage: cmdlog log cmd"); exit(1);

}

if((fp1=fopen(argv[1],"w"))==NULL){ /* error */... }

if((fp2=popen(argv[2],"r"))==NULL){ /* error */...}

while((n=fread(buf,sizeof(char),sizeof(buf),fp2))>0){

if(fwrite(buf,sizeof(char),n,fp1)!=n){/* error */...}

if(fwrite(buf,sizeof(char),n,stdout)!=n){/* error */..}

}

(void) pclose(fp2); (void) fclose(fp1);

return 0;

}

12
Slajdy do wykładu „Systemy operacyjne 2”

FIFO (łącze nazwane)

FIFO – typ pliku specjalnego, charakteryzującego się tym, że sekwencja

zapisanych bajtów jest odczytana w kolejności zapisu („in the first-in-first-out

order”).
#include <sys/types.h>

#include <sys.stat.h>

int mkfifo(const char *path, mode_t mode);

Tworzy wpis w systemie pliku typu FIFO. Lokalizację FIFO określa ścieżka

(względna lub bezwzględna) path, mode określa prawa dostępu (jak przy

wywołaniu open()).

FIFO może być wykorzystane do komunikacji jednokierunkowej tak samo jak

łącze anonimowe, jeśli tylko zostanie otwarte zarówno do odczytu jak i do zapisu.

Jedno łącze może być wykorzystane przez więcej niż dwa procesy (np. dwóch

nadawców i jeden odbiorca komunikatów). Do komunikacji potrzebny jest

przynajmniej jeden nadawca komunikatów (deskryptor z prawami zapisu) i jeden

odbiorca (deskryptor z prawami odczytu).

Uwaga: Typowo jeden proces otwiera łącze do zapisu, a inny do odczytu.

Domyślnie operacje otwarcia dostępu są blokujące; funkcje open blokują

wołające wątki aż łącze nie zostanie otwarte do odczytu oraz do zapisu.

13
Slajdy do wykładu „Systemy operacyjne 2”

Przykład użycia FIFO

/* fifosv.c : MYFIFO -> stdout*/

…

#define FIFO_FILE "MYFIFO“

int main(void){

char buf[80];

int fd, m, n;

unlink(FIFO_FILE);

umask(0);

if(mkfifo(FIFO_FILE, 0666)){. .}

if((fd=open(FIFO_FILE,O_RDONLY)) <0){

. . .

}

while((n=read(fd,buf,80)) >0){

if((m=write(1,buf,n))!=n){ . . .

} else {

```````fprintf(stderr,"%d B read\n”,n);

}

} /* while() */

if(n==0){ 

````  fputs("EOD\n",stderr); return 0;

}

if(errno) perror(„fifosv”);

return 0;

}

/* fifocl.c : stdin -> MYFIFO */

…

#define FIFO_FILE "MYFIFO“

void handler(int sig){

fputs("SIGPIPE\n",stderr); return;

}

int main(int argc, char*argv[]){

char buf[80];// what if 8000?

int fd, m, n;

signal(SIGPIPE,handler); /* ☺ */

if((fd=open(FIFO_FILE,O_WRONLY))<0){.}

while((n=read(0,buf,80))>0){

if((m=write(fd,buf,n))!=n){…

} else {

fprintf(stderr,

"%d B to FIFO\n",m);

}

}/* while() */

if(n==0)fputs("EOD\n",stderr);

else {

if(errno==EINTR)

fputs("EINTR\n",stderr);

else perror("fifocl");

}

return 0;

}

14
Slajdy do wykładu „Systemy operacyjne 2”

Niebezpieczeństwo blokady przy otwieraniu FIFO

Nieprzemyślane rozpoczynanie dwukierunkowej komunikacji za pomocą dwóch

FIFO może skutkować blokadą procesów. Przykład:

/* prog1.c */

...

int main(void){

int fd1, fd2;

...

if((fd1=open(”F21”,O_RDONLY))<0){

perror("open"); return 1;

}

if((fd2=open(”F12”,O_WRONLY))<0){

perror("open"); return 1;

}

/* code which is to read from fd1

* and to write to fd2 */

...

return 0;

}

/* prog2.c */

...

int main(void){

int fd1, fd2;

...

if((fd1=open(”F12”,O_RDONLY))<0){

perror("open"); return 1;

}

if((fd2=open(”F21”,O_WRONLY))<0){

perror("open"); return 1;

}

/* code which is to read from fd1

* and to write to fd2 */

...

return 0;

}

15
Slajdy do wykładu „Systemy operacyjne 2”

Nieblokujące użycie FIFO
POSIX: wywołanie funkcji open

▪ Jeśli ustawiono sygnalizatory O_NONBLOCK i O_RDONLY, to funkcja open natychmiast

powraca, zwracając -1 przy niepowodzeniu (inaczej numer deskryptora >=0).

▪ Jeśli ustawiono sygnalizator O_NONBLOCK i O_WRONLY funkcja open sygnalizuje błąd

jeśli łącze nie jest otwierane do odczytu przez (inny) wątek/proces.

▪ Domyślnie sygnalizator O_NONBLOCK nie jest ustawiony; wywołanie funkcji open

▪ dla trybu tylko do odczytu (O_RDONLY) blokuje wołający wątek aż łącze zostanie

otwarte do zapisu przez inny wątek.

▪ dla trybu tylko do zapisu (O_WRONLY) blokuje wołający wątek aż łącze zostanie

otwarte do odczytu przez inny wątek/proces.”

Przykład: użycia O_NONBLOCK dla uniknięcia blokady przy otwieraniu FIFO.
for(i=0; i<20; i++){/* try 20 times (polling)*/

fd = open(pname,O_RDONLY|O_NONBLOCK);/* returns -1 if failed */

if(fd!=-1) break;

if(errno!=ENXIO){

perror("opening FIFO"); exit(1);

} else {

printf("waiting for a client"); sleep(2);

}

}

16
Slajdy do wykładu „Systemy operacyjne 2”

Nieblokujące użycie FIFO - cd.

POSIX: Próba zapisu do łącza za pomocą funkcji write przy ustawionym

sygnalizatorze O_NONBLOCK

▪ Wywołanie write nie blokuje

▪ Próba zapisu co najwyżej {PIPE_BUF} bajtów danych ma następujące skutki:

▪ Jeśli jest wystarczająco dużo wolnego miejsca w łączu – funkcja write

zapisze wszystkie dane do (bufora) łącza i zwróci liczbę zapisanych

bajtów.

▪ W przeciwnym przypadku funkcja write nie zapisuje danych w łączu,

zwraca −1 ustawiając zmienną errno na [EAGAIN].

▪ Próba zapisu więcej niż {PIPE_BUF} bajtów danych ma następujące skutki:

▪ Jeśli przynajmniej jeden bajt może być zapisany do łącza – zapis jest

zrealizowany, a funkcja write zwraca liczbę zapisanych danych.

▪ W przeciwnym przypadku funkcja write nie zapisuje danych w łączu,

zwraca −1 ustawiając zmienną errno na [EAGAIN].

17
Slajdy do wykładu „Systemy operacyjne 2”

Zapis do łącza - podsumowanie

18
Slajdy do wykładu „Systemy operacyjne 2”

Nieblokujące użycie FIFO - cd.

POSIX: Wywołanie funkcji read dla pustego łącza (nazwanego lub anonimowego):

▪ Jeśli żaden proces nie ma łącza otwartego do zapisu funkcja read zwraca

wartość 0, co oznacza koniec danych (end-of-file).

▪ Jeśli jakiś proces ma łącze otwarte do zapisu:

▪ Jeśli ustawiono sygnalizator O_NONBLOCK, to read zwraca −1 ustawiając

zmienną errno na [EAGAIN].

▪ Jeśli sygnalizator O_NONBLOCK jest wyzerowany (stan domyślny), to read

blokuje wołający wątek aż w łączu pojawią się dane, albo wszystkie dostępy

do łącza w trybie zapisu zostaną zamknięte.

Uwagi:

Funkcja read może zwrócić 0

▪ W trybie blokującym - jeśli napotkano koniec danych

▪ W trybie nieblokującym (ustawione O_NONBLOCK) gdy łącze jest (tymczasowo)

puste lub żaden proces nie jest połączony z tym łączem do zapisu. Koniec

danych musi być rozpoznany przez zawartość strumienia danych.

19
Slajdy do wykładu „Systemy operacyjne 2”

Włączanie/wyłączanie blokującego

trybu obsługi wejścia/wyjścia
#include <fcntl.h>

int set_nonblock_flag (int desc, int value){

/* Set the O_NONBLOCK flag of desc file descriptor,

if value is nonzero,

or clear the flag if value is 0.

Return 0 on success, or -1 on error with errno set.

Source: glibc documentation.

*/

int oldflags = fcntl(desc, F_GETFL, 0);

/* If reading the flags failed, return error indication */

if (oldflags == -1)

return -1;

/* Set just the flag we want to set. */

if (value != 0)

oldflags |= O_NONBLOCK;

else

oldflags &= ~O_NONBLOCK;

/* Store modified flag word in the descriptor. */

return fcntl(desc, F_SETFL, oldflags);

}

20
Slajdy do wykładu „Systemy operacyjne 2”

Łącza w MS Win

▪ Łącza anonimowe mogą służyć jedynie do komunikacji lokalnej.

▪ W MS Windows łącza nazwane mogą służyć do komunikacji

jednostronnej bądź dwukierunkowej (duplex) pomiędzy procesem

serwera łącza (tworzącym łącze) oraz procesami klientów łącza.

Komunikacja może być lokalna, bądź pomiędzy procesami na różnych

komputerach. Łącza są nazywane przez ścieżki UNC (Universal Naming

Convention), np.

\\myhost\pipe\mypipe wskazuje łącze mypipe na komputerze myhost

▪ Instancje łącza nazwanego współdzielą jedynie nazwę; dzięki temu wielu

klientów łącza może niezależnie komunikować się z serwerem łącza.

▪ Łącza mogą przenosić strumienie bajtów bądź komunikatów.

Uwaga: w systemie Linux (>=3.4) istnieje tryb pakietowy dla łącz

anonimowych (man pipe), który można użyć do przesyłania komunikatów o

zmiennej długości. Jeśli wywołanie funkcji write() zapisze n<=PIPE_BUF

bajtów do łącza – tworzy pakiet. Wywołanie funkcje read() może odczytać

cały ten pakiet (i tylko ten pakiet), używając odpowiednio dużego bufora (o

długości >=n).

