
L.J. Opalski, slides for Operating Systems course
1

POSIX Pipes/FIFOs (mostly)

Last modification date: 18.02.2019

L.J. Opalski, slides for Operating Systems course
2

POSIX definitions

▪ FIFO special file (or FIFO)

A type of file with the property that data written to such a file is read on a

first-in-first-out basis.

▪ Pipe

An object accessed by one of the pair of file descriptors created by the

pipe() function. Once created, the file descriptors can be used to

manipulate it, and it behaves identically to a FIFO special file when

accessed in this way. It has no name in the file hierarchy.

FIFO/pipe related defines

Last modification date: 25.10.2015

Header file Symbols

<errno.h>

<limits.h>, <unistd.h>

<signal.h>

<sys/stat.h>

EPIPE, ESPIPE

PIPE_BUF

SIGPIPE

S_ISFIFO(m)

L.J. Opalski, slides for Operating Systems course
3

Pipes

▪ Act as a conduit allowing two processes to communicate

▪ Issues:

▪ Is communication unidirectional or bidirectional?

▪ In the case of two-way communication, is it half or full-duplex?

▪ Must there exist a relationship (i.e., parent-child) between the

communicating processes?

▪ Can the pipes be used over a network?

▪ Ordinary pipes – are not visible outside of the process that created

it. However, a parent process, which created a pipe, can

communicate with a child process that inherited access to the pipe.

▪ Named pipes (Unix FIFOs) – can be used for communication by

processes which know the name, and have needed (read or wright)

access rights.

L.J. Opalski, slides for Operating Systems course
4

Ordinary Pipes

▪ Ordinary pipes allow communication in standard producer-consumer

style

▪ Producer writes to one end (the write-end of the pipe)

▪ Consumer reads from the other end (the read-end of the pipe)

▪ Ordinary pipes are typically unidirectional (but can be bi-directional, e.g. in

some UNIX systems which support STREAM subsystem)

▪ Communication require passing descriptors to pipe endpoint(s), e.g.

▪ Child process can inherit pipe descriptors of its parent

▪ In Unix systems descriptors can be passed with local socket IPC.

L.J. Opalski, slides for Operating Systems course
5

POSIX/UNIX pipe creation

#include <unistd.h>

int ret=pipe (int filedes[2])

creates uni-directional pipe, stores file descriptors for the reading and
writing pipe ends (respectively) into filedes[0] and filedes[1]

Upon success ret==0, otherwise ret==-1 (error code in errno).

Illustration of pipe creation and trivial use

User process char buf[16];

int fd[2], ret;

if(pipe (fd)<0){ perror(”pipe”); exit(1); }
if((ret=write (fd[1],”text”,5)<5){

perror(”)write”); exit(2);

}

if((ret=read (fd[0],buf, sizeof(buf))<0){

perror(”)read”); exit(3);

}

write(1,buf,ret);

\0txet ---->
kernel

pipe

L.J. Opalski, slides for Operating Systems course
6

Unix/POSIX: pipes and fork()

fork() makes the pipe descriptors available to the child process, thus
enabling parent-child communication

tablica i- węzłów

open file table

Counter
2 (PIPE)

0

1

2

3

4

5

6

7

8

File descriptor table

of process A

Counter
2 WRONLY

Counter
2 RDONLY

File descriptor table

of a child of

process A i-node table-

L.J. Opalski, slides for Operating Systems course
7

IPC with a pipe - 1

Example. The parent process sends data to its child process (write() / read())
...

int main(void){

char buf[16];

int fd[2], pid, ret;

if(pipe(fd)<0){/* error handling */ }

if((pid=fork()) == –1){){ /* error handling */ }

else if(pid>0){ /* parent process */

close(fd[0]); /* closing unused pipe end */

if((ret=write(fd[1],”tekst”,6)<6){/* error */}

wait(NULL); /* waiting for child process to terminate */

} else { /* child process */

close(fd[1]); /* closing unused pipe end */

if((ret=read(fd[0],buf, sizeof(buf))<0){{/* error */}

write(1,buf,ret);

}

return EXIT_SUCCESS;

}

L.J. Opalski, slides for Operating Systems course
8

IPC with a pipe - 2

Example. The parent process sends data to its child process (using stream)

...

int main(void){

int fd[2], ret;

pid_t pid;

FILE *stream;

if(pipe(fd)<0){/* error handling */ }

if((pid=fork()) == –1){ /* error handling */ }

else if(pid>0){

close(fd[0]); /* closing unused pipe end */

stream=fdopen(fd[1],”w”);

fprintf(stream,”Message …”);

fclose(stream);

if(wait(NULL)<0){ /* error handling */ }

} else {

close(fd[1]); /* closing unused pipe end */

stream =fdopen(fd[0],”r”);

while((ret=fgetc(stream)) != EOF)

putchar(ret);

fclose(stream);

}

return EXIT_SUCCESS;

}

L.J. Opalski, slides for Operating Systems course
9

Pipes – cont.

▪ Properties of a pipe:

▪ Access to a pipe – only via its file descriptors (that are inherited).

▪ One cannot get/set position. An attempt sets errno=ESPIPE (invalid

seek)

▪ An attempt to write to a closed pipe sets errno=EPIPE (broken pipe);

also SIGPIPE signal is sent to the writer process.

▪ Limited capacity (PIPE_BUF >=512B)

▪ No logical record boundaries

▪ While pipe file descriptor is in blocking mode (default)

• Reading or writing pipe is atomic if the size of data to be sent is

not greater than PIPE_BUF.

• If a message of size <= PIPE_BUF would overflow the pipe – the

process is waiting until enough free space is available. Messages

longer than PIPE_BUF are sent in fragments.

For discussion of non-blocking mode – see later.

▪ When all file descriptors associated with a pipe are closed, any data

remaining in the pipe shall be discarded.

L.J. Opalski, slides for Operating Systems course
10

Pipes – cont.

#include <stdio.h>

FILE * fp=popen (const char *cmd, const char *mode)

Creates a sub-process (using command cmd) and if mode is equal to:

▪ „r” – then fp is a stream connected to stdout of the sub-process

▪ „w” – then fp is a stream connected to stdin of the sub-process

int pclose(FILE *fp)

closes access to the stream that was created with popen(), waits for the

command to terminate and returns the termination status of the process

that was running the command language interpreter. For more details see

man pclose.

L.J. Opalski, slides for Operating Systems course
11

Example popen usage

/* cmdlog.c – Executes shell command(cmd), duplicating

standard output stream (to a file: log) */

#include <stdio.h>

#include <stdlib.h>

int main(int argc, char *argv[]){

char buf[BUFSIZ];

FILE *fp1, *fp2;

size_t n;

if(argc!=3){

fprintf(stderr,"Usage: cmdlog log cmd"); exit(1);

}

if((fp1=fopen(argv[1],"w"))==NULL){ /* error */... }

if((fp2=popen(argv[2],"r"))==NULL){ /* error */...}

while((n=fread(buf,sizeof(char),sizeof(buf),fp2))>0){

if(fwrite(buf,sizeof(char),n,fp1)!=n){/* error */...}

if(fwrite(buf,sizeof(char),n,stdout)!=n){/* error */..}

}

(void) pclose(fp2); (void) fclose(fp1);

return 0;

}

L.J. Opalski, slides for Operating Systems course
12

FIFOs

FIFO – a type of a file with the property that data written to such a file is

read in the first-in-first-out order.

#include <sys/types.h>

#include <sys.stat.h>

int mkfifo(const char *path, mode_t mode);

creates the FIFO type file system object (location specified with relative or

absolute path), mode determines access mode (as for open()).

The FIFO can be used for communication in the same way as pipe, after it

is opened both for reading and writing.

One FIFO can be used by more than 2 processes – if at least one of them

opened it for writing and at least one opened it for reading.

Note: By default open() w.r.t. a FIFO, blocks all threads, until at least one of

them attempts opening for reading, and at least one attempts to open FIFO

for writing.

L.J. Opalski, slides for Operating Systems course
13

Example of FIFO usage
/* fifosv.c */

…

#define FIFO_FILE "MYFIFO“

int main(void){

char buf[80];

int fd, m, n;

unlink(FIFO_FILE);

umask(0);

if(mkfifo(FIFO_FILE, 0666)){. .}

if((fd=open(FIFO_FILE,O_RDONLY)) <0){

. . .

}

while((n=read(fd,buf,80)) >0){

if((m=write(1,buf,n))!=n){ . . .

} else {

```````fprintf(stderr,"%d B read\n”,n);

}

} /* while() */

if(n==0){ 

````  fputs("EOD\n",stderr); return 0;

}

if(errno) perror(„fifosv”);

return 0;

}

/* fifocl.c */

…

#define FIFO_FILE "MYFIFO“

void handler(int sig){

fputs("SIGPIPE\n",stderr); return;

}

int main(int argc, char*argv[]){

char buf[80];// what if 8000?

int fd, m, n;

signal(SIGPIPE,handler); /* ☺ */

if((fd=open(FIFO_FILE,O_WRONLY))<0){.}

while((n=read(0,buf,80))>0){

if((m=write(fd,buf,n))!=n){ . . .

} else {

fprintf(stderr,

"%d B to FIFO\n",m);

}

}/* while() */

if(n==0)fputs("EOD\n",stderr);

else {

if(errno==EINTR)

fputs("EINTR\n",stderr);

else perror("fifocl");

}

return 0;

}

L.J. Opalski, slides for Operating Systems course
14

Deadlock while opening FIFOs

Unfortunate coding two-way communication with two (created earlier) FIFOs: ”F12”,

”F21” can result in deadlock. Example of bad coding follows.

/* prog1.c */

...

int main(void){

int fd1, fd2;

...

if((fd1=open(”F21”,O_RDONLY))<0){

perror("open"); return 1;

}

if((fd2=open(”F12”,O_WRONLY))<0){

perror("open"); return 1;

}

/* code that is to read from fd1

* and writes to fd2 */

...

return 0;

}

/* prog2.c */

...

int main(void){

int fd1, fd2;

...

if((fd1=open(”F12”,O_RDONLY))<0){

perror("open"); return 1;

}

if((fd2=open(”F21”,O_WRONLY))<0){

perror("open"); return 1;

}

/* code that is to read from fd1

* and writes to fd2 */

...

return 0;

}

L.J. Opalski, slides for Operating Systems course
15

Non-blocking use of FIFOs

▪ When opening a FIFO with O_RDONLY or O_WRONLY set:

▪ If O_NONBLOCK flag of the file descriptor is set, an open() for reading-

only shall return without delay. An open() for writing-only shall return an

error if no process currently has the file open for reading.

▪ If O_NONBLOCK is clear, an open() for reading-only shall block the

calling thread until a thread opens the file for writing. An open() for writing-

only shall block the calling thread until a thread opens the file for reading.

Example use of O_NONBLOCK to avoid deadlock on FIFO open.

for(i=0; i<20; i++){/* try 20 times (polling)*/

fd = open(pname,O_RDONLY|O_NONBLOCK);/* returns -1 if failed */

if(fd!=-1) break;

if(errno!=ENXIO){

perror("opening FIFO"); exit(1);

} else {

printf("waiting for a client");

sleep(2);

}

}

L.J. Opalski, slides for Operating Systems course
16

Non-blocking use of FIFOs – cont.

▪ When attempting to write to a pipe or FIFO:

▪ If the O_NONBLOCK flag is set

• The write() function shall not block the thread.

• A write request for {PIPE_BUF} (system defined constant) or fewer

bytes shall have the following effect:

– if there is sufficient space available in the pipe, write() shall

transfer all the data and return the number of bytes requested.

– Otherwise, write() shall transfer no data and return −1 with errno

set to [EAGAIN].

• A write request for more than {PIPE_BUF} bytes shall cause one of the

following:

– When at least one byte can be written, transfer what it can and

return the number of bytes written.

– When no data can be written, transfer no data, and return −1 with

errno set to [EAGAIN].

L.J. Opalski, slides for Operating Systems course
17

Summary of writing conditions

L.J. Opalski, slides for Operating Systems course
18

Non-blocking use of FIFOs – cont.

▪ When attempting to read from an empty pipe or FIFO:

▪ If no process has the pipe open for writing, read() shall return 0 to indicate

end-of-file.

▪ If some process has the pipe open for writing and O_NONBLOCK is set,

read() shall return −1 and set errno to [EAGAIN].

▪ If some process has the pipe open for writing and O_NONBLOCK is clear,

read() shall block the calling thread until some data is written or the pipe

is closed by all processes that had the pipe open for writing.

Remarks:

read returns 0:

▪ In blocking mode (O_NONBLOCK) - to indicate end of data condition.

▪ In non-blocking mode (O_NONBLOCK is set) - to indicate empty pipe/FIFO

(temporary condition) or no connection to that pipe/FIFO in write mode from any

thread/process. Thus the end of data condition has to be inferred from data

content.

Use of non-blocking FIFOs/pipes is more challenging than use of blocking ones.

L.J. Opalski, slides for Operating Systems course
19

Switching blocking/non-blocking mode

#include <fcntl.h>

int set_nonblock_flag (int desc, int value){

/* Set the O_NONBLOCK flag of desc if value is nonzero,

or clear the flag if value is 0.

Return 0 on success, or -1 on error with errno set.

Source: glibc documentation

*/

int oldflags = fcntl(desc, F_GETFL, 0);

/* If reading the flags failed, return error indication */

if (oldflags == -1)

return -1;

/* Set just the flag we want to set. */

if (value != 0)

oldflags |= O_NONBLOCK;

else

oldflags &= ~O_NONBLOCK;

/* Store modified flag word in the descriptor. */

return fcntl(desc, F_SETFL, oldflags);

}

L.J. Opalski, slides for Operating Systems course
20

Remarks regarding MS Win pipes
▪ An anonymous pipe is an unnamed, one-way pipe that typically transfers

data between a parent process and a child process. Anonymous pipes are

always local; they cannot be used for communication over a network.

▪ Under MS Windows named pipe is a named, one-way or duplex pipe for

communication between the pipe server and one or more pipe clients. The

term pipe server refers to a process that creates a named pipe, and the term

pipe client refers to a process that connects to an instance of a named pipe.

▪ Named pipes can be used to provide communication between processes on

the same computer or between processes on different computers across a

network.

▪ Pipe names follow UNC (Universal Naming Convention), embedding host

name, e.g. \\myhost\pipe\mypipe points at pipe mypipe at the host myhost

▪ All instances of a named pipe share the same pipe name, but each instance

has its own buffers and handles, and provides a separate conduit for

client/server communication.

▪ Data can be transmitted through a named pipe as either a stream of bytes or

as a stream of messages.

Note: Linux (>=3.4) also supports transport of messages of variable length via

anonymous pipes (so called packet mode – see man pipe).

