POSIX Pipes/FIFOs (mostly)

Last modification date: 18.02.2019

L.J. Opalski, slides for Operating Systems course



POSIX definitions

" FIFO special file (or FIFO)

A type of file with the property that data written to such a file is read on a
first-in-first-out basis.

" Pipe

An object accessed by one of the pair of file descriptors created by the
pipe( ) function. Once created, the file descriptors can be used to
manipulate it, and it behaves identically to a FIFO special file when
accessed in this way. It has no name in the file hierarchy.

FIFO/pipe related defines

Header file Symbols

<errno.h> EPIPE, ESPIPE
<limits.h>, <unistd.h> PIPE_BUF
<signal.h> SIGPIPE
<sys/stat.h> S_ISFIFO(m)

Last modification date: 25.10.2015 2 L.J. Opalski, slides for Operating Systems course



Pipes

® Act as a conduit allowing two processes to communicate

¥ |ssues:
= |s communication unidirectional or bidirectional?
= |n the case of two-way communication, is it half or full-duplex?

= Must there exist a relationship (i.e., parent-child) between the
communicating processes?

= Can the pipes be used over a network?

® Ordinary pipes — are not visible outside of the process that created
it. However, a parent process, which created a pipe, can
communicate with a child process that inherited access to the pipe.

® Named pipes (Unix FIFOs) — can be used for communication by
processes which know the name, and have needed (read or wright)
access rights.

L.J. Opalski, slides for Operating Systems course



Ordinary Pipes

® Ordinary pipes allow communication in standard producer-consumer
style

® Producer writes to one end (the write-end of the pipe)
® Consumer reads from the other end (the read-end of the pipe)

® Ordinary pipes are typically unidirectional (but can be bi-directional, e.g. in
some UNIX systems which support STREAM subsystem)

parent child
fd[O] fd[1] fd[O] fd[1]

L )-

® Communication require passing descriptors to pipe endpoint(s), e.g.
= Child process can inherit pipe descriptors of its parent
= In Unix systems descriptors can be passed with local socket IPC.

4 L.J. Opalski, slides for Operating Systems course



POSIX/UNIX pipe creation

#include <unistd.h>
int ret=pipe (int filedes[2])

creates uni-directional pipe, stores file descriptors for the reading and
writing pipe ends (respectively) into filedes[0] and filedes[1]

Upon success ret==0, otherwise ret==-1 (error code in errno).
lllustration of pipe creation and trivial use

User process char buf[16];
int fd[2], ret;
if( pipe (fd)<0){ perror(’pipe”); exit(1); }
if( (ret=write (fd[1],"text”,5)<5){
perror(”)write”); exit(2);
}

> if( (ret=read (fd[0],buf, sizeof(buf))<0){
perror(”)read”); exit(3);
} _
write(1,buf,ret);

kernel

5 L.J. Opalski, slides for Operating Systems course



Unix/POSIX: pipes and fork()

fork() makes the pipe descriptors available to the child process, thus
enabling parent-child communication

File descriptor table
File descriptor table of a child of

of process A process A open file table i-node table
0
1
2
3
g‘ Counter
~ 2 (PIPE)
6 \
7 N
8

6 L.J. Opalski, slides for Operating Systems course



IPC with a pipe - 1

Example. The parent process sends data to its child process (write() / read())

parent child
int main (void) { fa[0]  fd[1] fd[0] fd[1]

|
char buf[l6]; | *J
int fd[2], pid, ret; o — - — O

if ( pipe (fd)<0) {/* error handling */ }

A

if( (pid=fork()) == -1 ){ ){ /* error handling */ }
else if (pid>0){ /* parent process */
close (fd[0]); /* closing unused pipe end */
if( (ret=write(fd[1l],”tekst”,6)<6){/* error */}
wait (NULL); /* waiting for child process to terminate */
} else { /* child process */
close (fd[1]); /* closing unused pipe end */
if( (ret=read(fd[0],buf, sizeof (buf))<0){{/* error */}
write (1l,buf, ret); parent child
} fd[0]  fd[1]
return EXIT SUCCESS;

} (




IPC with a pipe - 2

Example. The parent process sends data to its child process ( using stream) ‘

© o parent child
int main (void) { fd0]  fd[1] 0]  fd[1]
int f£d[2], ret; | |
pid t pid; = | |
FILE *stream; ( —Ppe—] ()

if( pipe(fd)<0){/* error handling */ }

if( (pid=fork()) == -1 ){ /* error handling */ }

else if (pid>0) {
close (fd[0]); /* closing unused pipe end */
stream=fdopen (fd[1],"w"”) ;
fprintf (stream, "Message ..”);
fclose (stream) ;
if( wait (NULL)<0 ){ /* error handling */ }
} else {
close (fd[1l]); /* closing unused pipe end */
stream =fdopen (fd[0],"r"”);

while( (ret=fgetc(stream)) != EOF )
putchar (ret) ; parentl stream stream t child
fclose (Stream) : fd[0] fd[1] fd[0] fd[1]
} d

}

1 | - lhlel{l sSHages 10r Lt ll"\ﬂl’
8 = I ST o au-n-g—éyS[-e-m-S—GQU-ﬁSQ—'



Pipes — cont.

" Properties of a pipe:

Access to a pipe — only via its file descriptors (that are inherited).

One cannot get/set position. An attempt sets errno=ESPIPE (invalid
seek)

An attempt to write to a closed pipe sets errno=EPIPE (broken pipe);
also SIGPIPE signal is sent to the writer process.

Limited capacity (PIPE_BUF >=512B)
No logical record boundaries
While pipe file descriptor is in blocking mode (default)

- Reading or writing pipe is atomic if the size of data to be sent is
not greater than PIPE_BUF.

- If a message of size <= PIPE_BUF would overflow the pipe — the
process is waiting until enough free space is available. Messages
longer than PIPE_BUF are sent in fragments.

For discussion of non-blocking mode — see later.

When all file descriptors associated with a pipe are closed, any data
remaining in the pipe shall be discarded.

9 L.J. Opalski, slides for Operating Systems course



Pipes — cont.

#include <stdio.h>

FILE * fp=popen (const char *cmd, const char *mode)

Creates a sub-process (using command cmd) and if mode is equal to:
" ,r’ —then fp is a stream connected to stdout of the sub-process

" ,w” —then fp is a stream connected to stdin of the sub-process

int pclose(FILE *fp)

closes access to the stream that was created with popen(), waits for the
command to terminate and returns the termination status of the process
that was running the command language interpreter. For more details see
man pclose.

10 L.J. Opalski, slides for Operating Systems course



Example popen usage

/* cmdlog.c — Executes shell command (emd), duplicating
standard output stream (to a file: log) */

#include <stdio.h>

#include <stdlib.h>

int main(int argc, char *argv([]) {

char buf[BUFSIZ];

FILE *fpl, *fp2;

size t n;
1f (argc!=3) {

fprintf (stderr,"Usage: cmdlog 1log cmd"); exit(l);

}
if ((fpl=fopen (argv[1l],"w"))==NULL){ /* error */... }
if ((fp2=popen (argv[2],"r"))==NULL){ /* error */...}

while ( (n=fread (buf,sizeof (char),sizeof (buf), fp2))>0) {

if (fwrite (buf,sizeof (char),n, fpl) !=n){/* error */...}
if (fwrite (buf, sizeof (char),n, stdout) !=n) {/* error */..}
}
(void) pclose(fp2); (void) fclose(fpl);

return 0O;

L.J. Opalski, slides for Operating Systems course



FIFOs

FIFO — a type of a file with the property that data written to such a file is
read in the first-in-first-out order.

#include <sys/types.h>
#include <sys.stat.h>
int mkfifo(const char *path, mode t mode);

creates the FIFO type file system object (location specified with relative or
absolute path), mode determines access mode (as for open() ).

The FIFO can be used for communication in the same way as pipe, after it
is opened both for reading and writing.

One FIFO can be used by more than 2 processes — if at least one of them
opened it for writing and at least one opened it for reading.

Note: By default open() w.r.t. a FIFO, blocks all threads, until at least one of
them attempts opening for reading, and at least one attempts to open FIFO
for writing.

12 L.J. Opalski, slides for Operating Systems course



Example of FIFO usage

/* fifosv.c */ :/* fifocl.c */
I
#define FIFO FILE "MYFIFO“ | #define FIFO FILE "MYFIFO“
int main (void) { void handler (int siqg) {
char buf[80]; fputs ("SIGPIPE\n", stderr); return;
int f£d, m, n; }
unlink (FIFO FILE) ; int main(int argc, char*argv[]) {
umask (0) ; char buf[80];// what if 80007
if (mkfifo (FIFO FILE, 0666)){. .} int fd, m, n;
if ((fd=open (FIFO FILE,O RDONLY)) <O0) { signal (SIGPIPE, handler); /* © */
if ((fd=open (FIFO FILE,O WRONLY))<O0) {.}

} while ( (n=read (0,buf,80))>0 ) {

while ( (n=read (fd,buf,80)) >0 ) { if( (m=write (fd,buf,n))!=n ) {
if ((m=write(l,buf,n)) !=n) { } else {
} else { fprintf (stderr,
““““ fprintf (stderr,"%d B read\n”,n); "$d B to FIFO\n",m);

}
} /* while () */
1f (n==0) {
: fputs ("EOD\n", stderr); return O;

}
}/* while() */
if (n==0) fputs ("EOD\n", stderr) ;
else {
if (exrrno==EINTR)
fputs ("EINTR\n", stderr) ;
else perror ("fifocl");
}

return 0;

}
if (errno) perror (,fifosv”);
return 0;

}

L.J. Opalski, slides for Operating Systems course

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
13 !



Deadlock while opening FIFOs

Unfortunate coding two-way communication with two (created earlier) FIFOs: "F12”,
”F21” can result in deadlock. Example of bad coding follows.

/* progl.c */ /* prog2.c */

int fdl, fd2; int fdl, fd2;

if ((fdl=open (“F21”,0 RDONLY) )<0 ) { 1f ((fdl=open ("F12”,0 RDONLY) )<0 ) {
perror ("open") ; : perror ("open") ; return 1;
}

}
if ((fd2=open ("F12”,0 WRONLY) ) <0 ) { i1f ((fd2=open ("F21”,0 WRONLY) ) <0 ) {
perror ("open") ; return 1; perror ("open") ; return 1;

|
|
|
|
|
|
int main (void) { :int main (void) {
|
|
|
|
|

}
/* code that is to read from fdl

* and writes to fd2 */

}
/* code that is to read from fdl
* and writes to fd2 */

return 0;

}

return 0;

|
|
|
|
|
|
|
|
|
|
|
|
|
|
} |
|

14 L.J. Opalski, slides for Operating Systems course



Non-blocking use of FIFOs

" When opening a FIFO with O_RDONLY or O_WRONLY set:

= |f O NONBLOCK flag of the file descriptor is set, an open( ) for reading-
only shall return without delay. An open( ) for writing-only shall return an
error if no process currently has the file open for reading.

= |f O NONBLOCK is clear, an open( ) for reading-only shall block the
calling thread until a thread opens the file for writing. An open( ) for writing-
only shall block the calling thread until a thread opens the file for reading.

Example use of O_NONBLOCK to avoid deadlock on FIFO open.

for (i=0; 1<20; i++){/* try 20 times (polling)*/
fd = open(pname,O_RDONLYlO_NONBLOCK);/* returns -1 if failed */
if (fd!=-1) break;
if (errno!=ENXIO) {

perror ("opening FIFO"); exit (1),
} else {

printf ("waiting for a client");

sleep(2);

15 L.J. Opalski, slides for Operating Systems course



Non-blocking use of FIFOs — cont.

" When attempting to write to a pipe or FIFO:
= |fthe O NONBLOCK flag is set
- The write( ) function shall not block the thread.

- A write request for {PIPE_BUF} (system defined constant) or fewer
bytes shall have the following effect:

— if there is sufficient space available in the pipe, write( ) shall
transfer all the data and return the number of bytes requested.

— Otherwise, write( ) shall transfer no data and return =1 with errno
set to [EAGAIN].

- A write request for more than {PIPE_BUF} bytes shall cause one of the
following:

— When at least one byte can be written, transfer what it can and
return the number of bytes written.

— When no data can be written, transfer no data, and return =1 with
errno set to [EAGAIN].

16 L.J. Opalski, slides for Operating Systems course



Summary of writing conditions

Write to a Pipe or FIFO with O_NONBLOCK clear

Immediately Writable: None Some nbyte

nbyte<{PIPE_BUF} Atomic blocking Atomic blocking Atomic immediate
nbyte nbyte nbyte

nbyte>{PIPE_BUF} Blocking nbyte Blocking nbyte Blocking nbyte

Write to a Pipe or FIFO with O_NONBLOCK set

Immediately Writable: None Some nbyte

nbyte<{PIPE_BUF| -1, [EAGAIN] -1, [EAGAIN] Atomic nbyte

nbyte>{PIPE_BUF] -1, [EAGAIN] <nbyte or -1, <nbyte or —1,
[EAGAIN] [EAGAIN]

17 L.J. Opalski, slides for Operating Systems course




Non-blocking use of FIFOs — cont.

" When attempting to read from an empty pipe or FIFO:
= If no process has the pipe open for writing, read( ) shall return O to indicate
end-of-file.
= |f some process has the pipe open for writing and O _NONBLOCK is set,
read( ) shall return =1 and set errno to [EAGAIN].

= |f some process has the pipe open for writing and O _ NONBLOCK is clear,
read( ) shall block the calling thread until some data is written or the pipe
IS closed by all processes that had the pipe open for writing.

Remarks:

read returns O:
" In blocking mode (O _NONBLOCK) - to indicate end of data condition.

" In non-blocking mode (O_NONBLOCK is set) - to indicate empty pipe/FIFO
(temporary condition) or no connection to that pipe/FIFO in write mode from any
thread/process. Thus the end of data condition has to be inferred from data
content.

Use of non-blocking FIFOs/pipes is more challenging than use of blocking ones.

18 L.J. Opalski, slides for Operating Systems course



Switching blocking/non-blocking mode

#include <fcntl.h>
int set nonblock flag (int desc, int value) {
/* Set the O NONBLOCK flag of desc if value is nonzero,
or clear the flag if wvalue is 0.
Return 0O on success, or -1 on error with errno set.
Source: glibc documentation
*/
int oldflags = fcntl(desc, F GETFL, O0);
/* If reading the flags failed, return error indication */
1f (oldflags == -1)
return -1;
/* Set just the flag we want to set. */
1f (value != 0)
oldflags |= O NONBLOCK;
else
oldflags &= ~O NONBLOCK;
/* Store modified flag word in the descriptor. */
return fcntl (desc, F SETFL, oldflags);

19 L.J. Opalski, slides for Operating Systems course



Remarks regarding MS Win pipes

® An anonymous pipe is an unnamed, one-way pipe that typically transfers
data between a parent process and a child process. Anonymous pipes are
always local; they cannot be used for communication over a network.

® Under MS Windows named pipe is a hamed, one-way or duplex pipe for
communication between the pipe server and one or more pipe clients. The
term pipe server refers to a process that creates a named pipe, and the term
pipe client refers to a process that connects to an instance of a named pipe.

® Named pipes can be used to provide communication between processes on
the same computer or between processes on different computers across a
network.

" Pipe names follow UNC (Universal Naming Convention), embedding host
name, e.g. \\myhost\pipe\mypipe points at pipe mypipe at the host myhost

® All instances of a named pipe share the same pipe name, but each instance
has its own buffers and handles, and provides a separate conduit for
client/server communication.

® Data can be transmitted through a named pipe as either a stream of bytes or
as a stream of messages.

Note: Linux (>=3.4) also supports transport of messages of variable length via
anonymous pipes (so called packet mode — see man pipe)

20 L.J. Opalski, indes.for Operating Systems course



