Lecture 1 - Processes

Operating Systems 1

Warsaw University of Technology - Faculty of Mathematics and Information Science

Process Concept
A unit of work scheduled by the user

Process = a program in execution

not necessarily execu‘ting ot the moment

Other names: Task - in time-shared systems, Job - in batch systems

POSIX definition:

An address space with one or more threads executing within
that address space, and the required system resources for those threads

Process Control Block

An in-memory data structure held by the kernel for each process

PCB 100

PCB 101

PCB 102

Process 100

Process 101

Process 102

kernel

userspace

state = RUNNING

id = 102

saved CPU state
EAX = 17, ESP = ...

open files table
fdle] = ...
fdl1]
fd[3]

euid, gquid, suid

memory mappings

] Ox0000
Process in memory
What typically sits inside memory seen by the process?
.text
/ . data
Machine code loaded by the OS, fetched by the CPU
Global variables and constants / .heap
Dynamically allocated objects — Vv
Main thread's stack frames
Address space - set of all valid addresses generated by the process .stack
OS itself does give or monitor this role assignment, it's up to the program
to manage and give meaning to it's memory.
OxFFFF

Process Lifetime

An in-memory data structure held by the kernel for each process

user creates
a new process Via SL/SCO«“

$t/ste_m loads progrom,

prepo«res Memort/, exit sysca“

scheduler o(iS(aatcl«

A context switch

What happens when CPU switches from one task to another

PO [executing](ready J[executing
syscall/interrupt \l/ state persisted /]\
in memory (PcB) E—
save PO state Sl (R0 L
[into PCB J §[Erom PCB
scheduler decision :?\l/ l]\
load P1 state save s
£rom PCB into PCB
\l/ /y\ syscall/interrupt
P1 [ready J[executing J[ready
wasted time!
f

crua | PO s) p1 (es) PO

time

Meet the scheduler

Kernel algorithm which selects the next process to be dispatched on a CPU

PCBs are organized into a linked list.

PO PCB The simplest scheduler picks the list head
struct PCB* running as the next process once currently running
current — next ——————=> NULL is preempted or needs to wait.

P1 PCB P2 PCB P8 PCB

d read read
ready ready 4 4
next next next NULL
queue > > >

P3 PCB P10 PCB

waiting waiting
waiting — next next = NULL

. > man 1 pstree
Process Hierarchy

Commonly there exists parent-child relationship between processes

P1 PCB
parent
hild
// C 1\i/mn \\
P2 PCB P3 PCB P4 PCB
par'ent/ parent parent
children children children
|
struct PCB*\I/ /\
P2 PCB Typically newly created process becomes a child of it's creator.
arent
cEildr-en Children might share or inherit some of the the parent's resources.

Process lifetime related syscalls

Process management interface provided by the OS

OS by itself is not interested in creating processes. It serves the user (applications).
User might want to run a process. The only way user can ask the OS to do something is through the syscall.

What a process can
ask the OS to do?

Ccreate
process

query
process

attributes

communicate
with other
process

terminate
process

terminate
self

) > man 3p fork

The mighty fork() syscall

PID 101 [executing](ready J[executing]
N\
fork() “
:er'w! \l/ Cs& /CS
PID 1@2 [ready [executing](ready J
cruo | PID 101 (s)(PID 102 J(es)(PID 101)

During fork() handling system allocates and initializes a new PCB along with necessary resources.
This new PCB is then yield to the scheduler as a new ready queue element.

Note: In case of multicore system the new process could execute (nearly) immediately on a distinct CPU.

What does the child do?

Address space inheritance

new!

PCB 101 parent
.text
exact
.data copy!
\
/
.heap
with
- stack 1 small
ret = 102 difference

PCB 102

!

.text

.data

.heap

Children inherit a copy of parent's address space.
They execute the same code, from the same point.
They have the same state of variables besides
fork return value!

parent stack child stack

ret = 102 ret = 0
i=10 i=10
y =3 y =3
X =2 X =2

$raddr = 0xCB0O3 $raddr = 0xCBO3

.stack
ret = 0

val = 0@ val = 0@
i = 100 i = 100

$raddr = OxCA44

$raddr = 0OxCA44

Process attribute inheritance
What beyond the memory is inherited (by default)?

INHERITED

address space contents
memory mappings
open file descriptors
environment variables
signal handlers
scheduling policy

process priority

NOT INHERITED

timers
awaiting signals
outsantding asynchronous operations
threads
file locks

memory locks

File descriptor inheritance

/" Parent PID 101)

int fd = open(...); // 3

pid_t pid = fork(); // 1@2
write(fd, ...); ——— |

)

/~ Child PID 102)

int fd = open(...); // 3
pid_t pid = fork(); // ©
write(fd,

&

v

)i

.
@: stdin

)

1: stdout

| —
)

2: stderr

~——

3: fptr
S —
)

4: NULL

——
)

5: NULL

| —

.
@: stdin

| —
)

1: stdout

| —
)

2: stderr

~——

3: fptr
L —
)

4: NULL

——
)

5: NULL

| —

Child inherits a copy of file descriptor table.

After fork, I/O operations are valid in both processes.
Open file description (mode, position) remain shared.
Child and parent may independently close their fd copies.

mode: r 74859: (regfile)
offset: 2 — size, timestamps,
inode: 1045 device, operations

mode: r 74859: (regfile)
offset: 2 size, timestamps,
////423? inode: 74859 dev1ce operations

Process termination
What _exit() syscall does?

_exit()
syscall done

y

> man 3p exit

CPUD [

PID 102][PID 101J[CSJ[PID 99
P102 PCB P191 PCB
running exit(3)—> exited
status = ? status = 3
¢ N\ /
memory memory
/ AN

exit code is memorized

within PCB

Q“ Process Memor(/
and other resources
are freed

PCB has to live
- it's a zombie!

When this exited PCB will die?

Parent must have a chance to consume the exit status

2. paren‘t obtains 4, Even‘tually, someone
exit status info will WOJt() the parent

V \

PID 101 [running/ready](terminated]
| fork() wait() exit() /)
PID 102 [running/ready](terminated JX

exit()/r '\ 3. PCB is freed

1. child exits system cow«(oletely
before it's parent ‘Forge‘ts about
and becomes a zowmbie the process

What if parent exits before the child without calling wait()?

Orphaned processes

If parent dies prematurely OS automatically reparents its children

1. parent exits while still L\av?ng
runvﬁng child processes

4. \nit process
calls wait() 4SAP

Y

exit()
PID 101 [running/ready][te,«minatedj X 3. child exits
J/for'k() \I/
PID 102 [running/ready J[terminatedjx
<—ppid == 10— /\ ppid == 1 =

2. dedicated process (init)
adopts orphaned child process

PID 1

=

Decoding exit status information

blocks au/odt?ng status of any child

pid_t wait(int #*stat_loc);
pid_t waitpid(pid_t pid, int *stat_loc, int options);

7 N\

controls who to wait for may behave V\on-—Uocking

with WNOHANG

termination reason (exited, signaled or stopped)

What is returned via stat_loc?
+ reason dependent info (exit code or lethal signal or stopping signal)

WIFEXITED(status) # True if child exited normally

WIFSIGNAED(status) # True if child terminated due to signal

WIFSTOPPED(status) # True if child has stopped

WIFEXITED(status) # True if child exited normally
WIFSIGNAED(status) # True if child terminated due to signal
WIFSTOPPED(status) # True if child has stopped

Executing different code

Meet the exec() syscall

With fork child has the same code as parent. exec() provides means of running a different binary.

P i PCB 102
1. process calls
exec('/home/file.exe', ...) \L
\text = [toxt
2. system discards new code
3 g whole address space
.dat&\ / .data
X
3. system loads code and
'h639/,\\\ data segments from the binary -heap
- gtack 4. heap is clean initialized .stack
et =0 stack contains new main() frame |main()
/ \

The exec() flavours

Se(oamtely passed arguments

"argO", "ar'g'l", "argZ", Arguments (w\sSeo(n an arrac/

Searches in $PATH execlp bundle argv——> execvp
¢rfind binary in $PATH
EXPQCtS o(irect patl« execl bundle QPQV% execv

¢ inherit caller envp

bundle argv—— execve

|

exec
syscall

Wants char** envp
environment

execle

What happens after exit() call?

And before the main()?

call
L do_work()]
call /I\ \l/ return
call

[main()
call 1\ return —E§\\\E§§ sv ‘\§§\\\\§S§

[» _libc_start_main (libc.so) A]———EE>(: exit() (libc.so) ij———55>(‘ _exit() j

call call

[exec syscall] [:exit syscalli}

The process user ID > man 3p seteuid

Normally during exec process user ID remains unchanged

exec() file
PCB 101 without SUID PCB 101
ruid = 1000 ruid = 1000
euid = 1000 euid = 1000
suid = 1000 suid = 1000

One can exec a program with SUID bit set in the mode filed of the inode to get privileges of the file owner

PCB 101 PCB 101 PCB 101 PCB 101
ruid = 1000 EE ruid = 1000 EE ruid = 1000 ruid = 1000
euid = 1000 euid = 0@ euid = 1000 = euid = 1000
suid = 1000 suid = 0 suid = 0 suid = 0

1. exec() file 2. drop privilege 3. re-gain the privilege

with SUID set via seteuid() via seteuid()

Process groups

session ol-a:\ect

contains multiple \

process groups

there can be at wmost
one \Coregrouno(process group

e

Session
SID = 101

> man 3p setpgid
> man 3p setsid

[c

ontrolling Terminal
/dev/ttyS0

.

Foreground Process group‘\\

PGID = 101

PID 105

//rBackground Process group‘\\

/

.

PGID = 102

l PID 102
_
)

PID 104

= |

/

grou(a IQO\O(QV

After fork() child inherits process group ID and session ID - this can be changed later on.

Fork alternatives

Advanced tools for creating new processes

pid_t vfork(void);

Faster process creation for cases where child immediately exec()'s a different binary.

In contrast to fork() child process shares the address space (no copy overhead).
Parent is stopped until child calls exec() or _exit().

int clone(int (*fn)(void %), void *stack, int flags, void *arg,
/% pid_t *parent_tid, void *tls, pid_t *child_tid %/);

Provides fine-grained control over what is shared and what is not via flags bitfield.

CLONE_PARENT - sharing PPID of the parent process

CLONE_FS - sharing file system root, current directory, umask
CLONE_FILES - sharing the file descriptor table

CLONE_SIGHAND - sharing signal table

CLONE_VM - sharing virtual memory

CLONE_VFORK - stops the parent process, until the child terminates

> man 2 vfork
> man 2 clone

