
Lecture 1 - Processes
Operating Systems 1

Warsaw University of Technology - Faculty of Mathematics and Information Science

Process Concept
A unit of work scheduled by the user

Process = a program in execution
not necessarily executing at the moment

Other names: Task - in time-shared systems, Job - in batch systems

POSIX definition:

An address space with one or more threads executing within
that address space, and the required system resources for those threads

> man 7 ps

Process Control Block
An in-memory data structure held by the kernel for each process

Process 100

kernel

userspace

state = RUNNING

PCB 100

Process 101

PCB 101

Process 102

PCB 102

id = 102

saved CPU state
EAX = 17, ESP = ...

open files table
fd[0] = ...
fd[1] = ...
fd[3] = ...

euid, guid, suid

memory mappings

...

Process in memory
What typically sits inside memory seen by the process?

.text

.data

.heap

.stack

0x0000

Address space - set of all valid addresses generated by the process

Machine code loaded by the OS, fetched by the CPU

Main thread's stack frames

OS itself does give or monitor this role assignment, it's up to the program
to manage and give meaning to it's memory.

0xFFFF

Global variables and constants

Dynamically allocated objects

Process Lifetime
An in-memory data structure held by the kernel for each process

new
system loads program,
prepares memory, ...

user creates
a new process via syscall

scheduler dispatch

preemption

exit syscall

I/O syscallI/O ready

ready running

waiting

terminated

A context switch
What happens when CPU switches from one task to another

P0
syscall/interrupt

time

wasted time!

P1

CPU0 P0

ready

CS P1 CS P0

readyexecuting

executing ready executing

save P0 state
into PCB

load P1 state
from PCB

load P0 state
from PCB

save P1 state
into PCB

scheduler decision

state persisted
in memory (PCB)

syscall/interrupt

Meet the scheduler
Kernel algorithm which selects the next process to be dispatched on a CPU

P0 PCB
running
next

NULL

current

PCBs are organized into a linked list.
The simplest scheduler picks the list head
as the next process once currently running
is preempted or needs to wait.

P1 PCB
ready
next

P2 PCB
ready
next

P8 PCB
ready
next

P3 PCB
waiting
next

P10 PCB
waiting
next NULL

NULL

ready
queue

waiting

struct PCB*

struct PCB*

Process Hierarchy
Commonly there exists parent-child relationship between processes

Typically newly created process becomes a child of it's creator.

> man 1 pstree

P1 PCB
parent
children

P2 PCB
parent
children

P3 PCB
parent
children

P4 PCB
parent

children

P2 PCB
parent
children Children might share or inherit some of the the parent's resources.

struct PCB*

Process lifetime related syscalls
Process management interface provided by the OS

OS by itself is not interested in creating processes. It serves the user (applications).
User might want to run a process. The only way user can ask the OS to do something is through the syscall.

What a process can
ask the OS to do?

create
process

terminate
process

communicate
with other

process
terminate

self

query
process

attributes

Process creation
The mighty fork() syscall

PID 101

fork()

CPU0 PID 101 CS PID 102 CS PID 101

executing ready executing

new!
CS CS

Note: In case of multicore system the new process could execute (nearly) immediately on a distinct CPU.

During fork() handling system allocates and initializes a new PCB along with necessary resources.
This new PCB is then yield to the scheduler as a new ready queue element.

PID 102 ready executing ready

> man 3p fork

What does the child do?
Address space inheritance

parent

exact
copy!

ret = 102
i = 10
y = 3
x = 2
$raddr = 0xCB03
val = 0
i = 100
$raddr = 0xCA44
...

parent stack child stack

with
1 small

difference

Children inherit a copy of parent's address space.
They execute the same code, from the same point.
They have the same state of variables besides
fork return value!

.text

PCB 101 PCB 102

.data

.heap

.stack
ret = 102

new!

.text

.data

.heap

.stack
ret = 0

ret = 0
i = 10
y = 3
x = 2
$raddr = 0xCB03
val = 0
i = 100
$raddr = 0xCA44
...

Process attribute inheritance
What beyond the memory is inherited (by default)?

INHERITED NOT INHERITED

address space contents

open file descriptors

environment variables

memory mappings

signal handlers

scheduling policy

process priority

...

timers

awaiting signals

outsantding asynchronous operations

threads

file locks

memory locks

...

Child inherits a copy of file descriptor table.
After fork, I/O operations are valid in both processes.
Open file description (mode, position) remain shared.
Child and parent may independently close their fd copies.

File descriptor inheritance

74859: (regfile)
size, timestamps,
device, operations

2: stderr

Child PID 102

3: fptr

4: NULL

5: NULL

int fd = open(...); // 3
pid_t pid = fork(); // 0
write(fd, ...);

mode: r
offset: 2
inode: 74859

...

... ...

...

...

1: stdout

0: stdin

...
mode: r
offset: 2
inode: 1045

2: stderr
Parent PID 101

3: fptr

4: NULL

5: NULL

int fd = open(...); // 3
pid_t pid = fork(); // 102
write(fd, ...);

...

1: stdout

0: stdin

74859: (regfile)
size, timestamps,
device, operations

...

done

exit(3) exit code is memorized
within PCB

all process memory
and other resources

are freed

PCB has to live
- it's a zombie!

Process termination
What _exit() syscall does?

CPU0

_exit()
syscall

PID 102 PID 99

> man 3p exit

PID 101 CS

P102 PCB
running

status = ?

memory

P101 PCB
exited

status = 3

memory

fork()

3. PCB is freed
system completely
forgets about
the process

2. parent obtains
exit status info

4. Eventually, someone
will wait() the parent

1. child exits
before it's parent
and becomes a zombie

What if parent exits before the child without calling wait()?

When this exited PCB will die?
Parent must have a chance to consume the exit status

> man 3p wait

PID 101 running/ready

running/ready terminated

terminated

exit()

wait() exit()
PID 102

2. dedicated process (init)
adopts orphaned child process

PID 1

4. init process
calls wait() ASAP

ppid == 101 ppid == 1

fork()

1. parent exits while still having
running child processes

Orphaned processes
If parent dies prematurely OS automatically reparents its children

PID 101 running/ready

running/ready

terminated
exit()

terminatedPID 102

3. child exits

PID 101

PID 102

Decoding exit status information

pid_t wait(int *stat_loc);
pid_t waitpid(pid_t pid, int *stat_loc, int options);

blocks awaiting status of any child

controls who to wait for may behave non-blocking
with WNOHANG

What is returned via stat_loc? termination reason (exited, signaled or stopped)
+ reason dependent info (exit code or lethal signal or stopping signal)

WIFEXITED(status) # True if child exited normally
WIFSIGNAED(status) # True if child terminated due to signal
WIFSTOPPED(status) # True if child has stopped

WIFEXITED(status) # True if child exited normally
WIFSIGNAED(status) # True if child terminated due to signal
WIFSTOPPED(status) # True if child has stopped

Executing different code
Meet the exec() syscall

With fork child has the same code as parent. exec() provides means of running a different binary.

2. system discards
whole address space

3. system loads code and
data segments from the binary

4. heap is clean initialized
stack contains new main() frame

> man 3p exec

PCB 102

.text

.data

.heap

.stack
ret = 0

PCB 102

.text
new code

.data

.heap

.stack
main()

1. process calls
exec('/home/file.exe', ...)

The exec() flavours

execlp bundle argv

bundle argv

bundle argv

Searches in $PATH

Expects direct path

Wants char** envp
environment

Separately passed arguments
"arg0", "arg1", "arg2", ... Arguments passed in an array

find binary in $PATH

inherit caller envp

execl

execle

execvp

execv

execve

exec
syscall

exec syscall

_libc_start_main (libc.so)

call

call

What happens after exit() call?
And before the main()?

main()

do_work()

exit() (libc.so) _exit()

exit syscall

call

call return

return

call

call

call

The process user ID > man 3p seteuid

PCB 101
ruid = 1000
euid = 1000
suid = 1000

exec() file
without SUID

Normally during exec process user ID remains unchanged

PCB 101
ruid = 1000
euid = 1000
suid = 1000

PCB 101
ruid = 1000
euid = 1000
suid = 1000

PCB 101
ruid = 1000
euid = 0
suid = 0

PCB 101
ruid = 1000
euid = 1000
suid = 0

PCB 101
ruid = 1000
euid = 1000
suid = 0

One can exec a program with SUID bit set in the mode filed of the inode to get privileges of the file owner

1. exec() file
with SUID set

2. drop privilege
via seteuid()

3. re-gain the privilege
via seteuid()

Process groups > man 3p setpgid
> man 3p setsid

Session
SID = 101

Foreground Process group
PGID = 101

PID 101

Controlling Terminal
/dev/ttyS0

session object
contains multiple
process groups

group leader

there can be at most
one foreground process group

After fork() child inherits process group ID and session ID - this can be changed later on.

Background Process group
PGID = 102

PID 102

PID 105 PID 106 PID 104

Advanced tools for creating new processes

pid_t vfork(void);

int clone(int (*fn)(void *), void *stack, int flags, void *arg, ...
/* pid_t *parent_tid, void *tls, pid_t *child_tid */);

Faster process creation for cases where child immediately exec()'s a different binary.
In contrast to fork() child process shares the address space (no copy overhead).
Parent is stopped until child calls exec() or _exit().

CLONE_PARENT – sharing PPID of the parent process
CLONE_FS – sharing file system root, current directory, umask
CLONE_FILES – sharing the file descriptor table
CLONE_SIGHAND – sharing signal table
CLONE_VM – sharing virtual memory
CLONE_VFORK - stops the parent process, until the child terminates

Fork alternatives > man 2 vfork
> man 2 clone

Provides fine-grained control over what is shared and what is not via flags bitfield.

