Processes @ POSIX/UNIX/Linux

POSIX 1003.1

,Process — an address space with one or more threads executing within
that address space, and the required system resources for those threads”.

Note: Many of the system resources defined by IEEE Std 1003.1-2001 are
shared among all of the threads within a process. These include the
process ID, the parent process ID, process group ID, session membership,
real, effective, and saved set-user-ID, real, effective, and saved set-group-
ID, supplementary group IDs, current working directory, root directory, file
mode creation mask, and file descriptors.

Last modification date: 21.10.2019 1 L.J. Opalski, slides for “’Operating Systems |I” course

Unix processes

® A process is a program in execution
" Processes are identified by their process identifier (PID), an integer

® Each process performs its operation on behalf of a user, characterized with a
unique user id (UID) and a group id (GID). UID and GID determine access

rights to system resources

" Linux defines personality identifiers that can modify semantics of some
system calls (to make the calls compatible with variants of UNIX)

Example. Displaying processes of a user lopalski (UID=1253)

$ps -lu lopalski
FS UD PID PPID CPRINI ADDR SZ WCHANTTY TIME CMD

8 O 1253 14457 14379 0 50 20 ? 142 pts/24 0:00 ps
8 S 1253 14379 14364 0 50 20 ? 423 ? pts/24 0:00 zsh

L.J. Opalski, slides for “’Operating Systems |I” course

Unix processes — cont.

® All processes are descendants of an initial system process running with PID=1,
UID=0, GID=1 (init or its equivalent, notably systemd).
Example. Gnu/Linux/Debian — system processes

UID PID PPID C STIME TTY TIME CMD C_lobook:™# pstree -A
root 1 0 116:40 ? 00:00:01 init[2] "1t_+:§td} R
root 2 1 016:40 ? 00:00:00 [ksoftirqd/0] :—c:;: psiree
root 3 1 2 16:40 ? 00:00:02 [events/0] _dhclient
root 4 3 0 16:40 ? 00:00:00 [khelper] '_events/B-+-aiosB
root 5 3 016:40 2 00:00:00 [kacpid] ! | —kacpid
root 29 3 016:40 ? 00:00:00 [kblockd/0] i i-kblockd-~B
root 39 3 016:40 ? 00:00:00 [pdflush] i E—Ichelper-
root 40 3 016:40 ? 00:00:00 [pdflush] i —Z=[pdf lush]
root 41 1 016:40 2 00:00:00 [kswapdO] E‘Exlm‘l
root 42 3 016:40 ? 00:00:00 [aio/0] :_5*[9Ett9]
i—inetd
daemon 1419 1 0 16:40 ? 00:00:00 /sbin/portmap E_k}“lhd
' ' e _ i—k journald
root 1753 1 0 16:40 ? 00:00:00 /sbin/syslogd i—kll:lgd
root 1756 1 016:40 ? 00:00:00 /sbin/klogd ' k=seriod
--------- i-ksoftirgd-H
root 1797 1 016:40 ? 00:00:00 /usr/sbin/inetd i —kswapdd
Ip 1801 1 016:40 ? 00:00:00 /usr/sbin/lpd -s i—1pd
root 1808 1 016:40 ? 00:00:00 /usr/sbin/sshd i —portmap
i—-rpc.statd
_ . . I—EEhﬂ
root 1857 1 0 16:40 tty2 00:00:00 /sbin/getty 38400 tty2

"—syslogd

L.J. Opalski, slides for “’Operating Systems |I” course

Unix processes — cont.

The number, names, PIDs, UIDs/GIDs of system processes differ between UNIX-

alike systems, but the init/systemd process always exists, has the same PID,
UID, GID and mission

Example. SunOS 5.9 — selected system processes
UID PID PPID C STIME TTY TIME CMD

root 0 O O 04:52:167? 0:01 sched
root 1 0O 0 04:52:167? 0:03 /etc/init -
root 2 0 0 04:52:167 0:00 pageout
root 3 0 1 04:52:16°7 24:56 fsflush

root 282 1 0 04:52:46°7 0:01 /usr/sbin/rpcbind

root 305
root 372

1 04:52:47 ? 0:00 /usr/sbin/inetd -s
1
root 367 1
1
1

0
0 04:52:49 7 0:55 /usr/lib/autofs/automountd
0 04:52:48 7 0:00 /usr/lib/nfs/lockd
daemon 369 0
root 400 0

04:52:48 ? 0:00 /usr/lib/nfs/statd
04:52:49 ? 0:00 /usr/sbin/cron

root 1183 11350 15:59:16 7 0:00 dtgreet -display :17

4 L.J. Opalski, slides for “’Operating Systems |I” course

Run-time process environment

®" Environment variables are process-accessible strings of the form:

name=value

Common environment variables:;

PATH - a list of paths to programs/scripts which are directly accessible to system shell
as external

HOME - home directory of a logged in user

PWD - current directory of a shell

PS1, PS2 —first and second level shell prompts

TERM - terminal type connected to the shell

SHELL - current shell

LOGNAME —logged in user name
RANDOM- random number

EDITOR - current (default) user editor
PPID - identifier of the parent process

" Environment variables are inherited by a child process created with fork ()
function call. For execle (), execve() calls the set of environment
variables can be defined anew; for other functions of exec group — the
environment variables are not changed.

5 L.J. Opalski, slides for “’Operating Systems |I” course

Run-time proces environment

® Shell maintains a list of variables. Typical command that creates/assigns
value to the variable is

variable_name=variable_value
The command
export variable name

makes the named variable available to newly created children as their
environment variable. Values of the variables can be retrieved by a
process:

® A C language program can create/modify an environment variables using
putenv (" name=value”) ;

" in a C-program, a value of an environment variable can be retrieved
using getenv () function, e.g.:
char *p=getenv (”name”) ;
if (p) printf (”name=%s\n”,p);
else printf (,variable name is undefined\n”) ;

6 L.J. Opalski, slides for “’Operating Systems |I” course

Run-time proces environment

POSIX:
At program start-up, three streams are predefined and need not be

opened explicitly:
® standard input (for reading conventional input),
® standard output (for writing conventional output), and
® standard error (for writing diagnostic output).
When opened, the standard error stream is not fully buffered; the
standard input and standard output streams are fully buffered if and

only if the stream can be determined not to refer to an interactive

device.

L.J. Opalski, slides for “’Operating Systems |I” course

Process: from creation till termination

user or system library

functions >
call T l return
the main function of a »
user program
I T l return
ca v \ 4

exit | systemlibrary | oyt | system library
startup procedure L » function I function

exit _exit
program call T calling a system functicﬁw: exit
system function exec system function exit
kernel

From process creation (system function exec) till
process termination (system function exit)

8 L.J. Opalski, slides for “’Operating Systems |I” course

Process life-cycle

" Process control system calls :
= fork creates a new process (a logical copy of the parent process)

= exec is used after a fork to replace one of the two processes’ virtual memory
space with a new program

= exit function terminates Process, storlng termination status

= A parent may wait for a child process to terminate; wait provides PID and

status of a terminated child so that the parent can tell which child terminated
and why.

pid_t pid1, pid2;
pid1 = fork(); /* duplicating the current process */
if (pid1 < 0) { perror("Fork failed"); exit(1);
} else if (pid1 == 0) { /* child process */
execl("/bin/ls", "Is", ,-I", NULL); /* Exit code of this process depends here on the code of /bin/Is */
perror("execlp”); /* this line gets executed ONLY when execl() failed */ exit(2);
} else { /* parent process */
if((pid2=walit (&status))>0){/* waiting for a child */
fprintf (stderr, "Potomek: PID=%d, status=%d\n”,(int)pid2,status);
} else { perror("wait”); exit(3); }

return(0); /* same as exit(0) */

9 L.J. Opalski, slides for “’Operating Systems |I” course

Process life-cycle

® Child process resulting from fork () call inherits from its parent:

Content of the address space (except for a value returned by fork()
call itself.

File descriptors

Environment variables

Mapping of files into memory (mmap ())
Signal handling

Priority and scheduling policy

" Child process does not inherit

State of process timers

Awaiting signals

Asynchronous operations

Threads, other than that which made the fork () call

10 L.J. Opalski, slides for “’Operating Systems |I” course

Process life-cycle

® A process resulting from exec system call inherits the caller:

PID, PPID,PGID, RUID, RGID, state of alarms
Current and home directories, umask, ulimit
File descriptors, except these which were marked as close-on-exec

Environment variables — if not modified call through execle (),
execve () library functions

Control terminal
Resource limits

® Signal mask and waiting signals, Note, that default signals with default
disposition (SIG_DFL) and ignored (SIG_IGN) keep the signal handling —
except SIGCHLD (if it was ignored — SIG_DFL or SIG_IGN disposition
results). Signals, which had their user handler set change their
disposition to default.

® Status of the floating point unit is reset to initial

® Counter of CPU use is not reset..

11 L.J. Opalski, slides for “’Operating Systems |I” course

Process life-cycle — cont.

® There are two kinds of termination:
= Normal: by a return from main(), when requested with the exit() , _exit() functions
= Abnormal: when requested by the abort() or when some signals are received.

® Upon termination the process file descriptors, directory streams, conversion descriptors
and message catalog descriptors open in the calling process shall be closed.

" If the parent process of the calling process has set its SA_ NOCLDWAIT flag or has set
the action for the SIGCHLD signal to SIG_IGN

= the process’ status information shall be discarded and the lifetime of the calling
process shall end immediately.

= Otherwise, status information shall be generated, and the terminating process
shall be transformed into a zombie process. The status information shall be made
available to the parent process (via wait(), waitid() or waitpid() until the process’
lifetime ends. Besides SIGCHLD shall be sent to the parent process.

® A zombie process - the remains of a live process after it terminates and before its
status information is consumed by its parent process.

" Orphaned process — a process whose parent process has exited.

® After parent’s lifetime has ended, its child processes are inherited by an
implementation-defined system process (init/system,...). Note: for UNIX that system
“substitute parent” process has PID==1. POSIX does not impose PID==1 requirement.

12 L.J. Opalski, slides for “’Operating Systems |I” course

Process creation/control/termination

pid t fork(void)
creates a logical copy of the current process; returns:

—1 when fails (error code in errno)
0 when stepping into the child process

>0 (child PID) when returning to the parent process
pid t vfork(void)

creates a logical copy of the current process, which shares address space
with the parent process. The parent process is stopped till the child process
calls exec () or exit () system functions. The child should not call library
exit () function, since it flushes I/O buffers and closes open descriptors
(which are shared with the parent). Using vfork () for large processes
saves system effort on creation a copy of the parent — if the child immediately
calls exec and so discards the allocated resources. Not a POSIX function.

13 L.J. Opalski, slides for “’Operating Systems |I” course

Process creation/control/termination — cont.

int clone(int (*£fn) (void *), void *child stack,

int flags, void *arg)

creates a new process, that can share a selected subset of parent’s context.
The new proces executes f£n (arg) (compare to fork() !), and when this
function executes return — the child is terminated (unless it calls exit function
or dies because of a signal). child_stack points at a sufficiently large memory
object, that can be used for stack of the new process. Bits of £lags select
what is to be shared. Symbolically:

CLONE PARENT — sharing PPID of the parent process
CLONE_FS — sharing file system root, current directory, umask
CLONE FILES - sharing the file descriptor table

CLONE SIGHAND - sharing signal table

CLONE VM — sharing virtual memory

Additionally:

CLONE VFORK - stops the parent process, until the child terminates

clone returns the thread id (TID) of the child process, or —1 (errno)
Note: clone is not a POSIX function.

14 L.J. Opalski, slides for “’Operating Systems |I” course

Process creation/control/termination — cont.

pid t wait(int *pstatus)

Is waiting for a child process to terminate, returning its PID. The function returns
—1 on error (eg. when no child, terminated nor active, exists). On success, when
status!=NULL => status=*pstatus stores information on reason of process

termination. The information can be portably retrieved with the following macros:

WIFEXITED (status) 1 when the child terminated with exit(), and 0 otherwise
WEXITSTATUS (status) argument of exit(), when WIFEXITED (status)

WIFSIGNALED (status) 1, when child terminated due to signal delivery, O -
otherwise

WTERMSIG (status) nr of the lethal signal (when WIFSIGNALED (status))
WIFSTOPPED (status) 1, when the child stopped, O - otherwise

WSTOPSIG (status) nr of the stopping signal (when WIFSTOPPED (status))

15 L.J. Opalski, slides for “’Operating Systems |I” course

Process creation/control/termination — cont.

pid t waitpid(pid t pid, int *pstatus, int options)
IS waiting for a sub-process specified with pid:
pid==-1 - any child process
pid< -1 —any child process, which is a member of the group nr |pid|
pid==0 - any child process, from the same group as the caller
pid>0 - the child process with PID==pid
Parameter options is a bit OR of 0, 1 or 2 constants:

WNOHANG — waitpid returns immediately, when no specified child process was
found

WUNTRACED - waitpid returns also, when a child process was stopped..

waitpid returns PID of the child process (if found) or —1 on failure (the exact
reason is specified with the global errno variable).

16 L.J. Opalski, slides for “’Operating Systems |I” course

Process creation/control/termination — cont.

void _exit(int status)

a library function that cause immediate termination of a process by a call to a
system function exit. Note: open files are closed without prior flushing
associated buffers. Child processes are adopted by process init, and the
parent process receives sighal SIGCHLD (unless it declared to ignore it).

void exit(int status)

a library function that calls exit after calling user functions previously
registered with atexit() (or on_exit()), after flushing all I/O user buffers
and closing temporary files (created with tmp£file()). If the terminated
process is a leader of a terminal session, then each foreground process of
this terminal session group is sent STGHUP signal. Furthermore the terminal
session loses its controlling terminal.

The value of status may be 0, EXIT _SUCCESS, EXIT_FAILURE, or any
other value, though only the least significant 8 bits (that is, status & 0377)
shall be available to a waiting parent process.

17 L.J. Opalski, slides for “’Operating Systems |I” course

Process creation/control/termination — cont.

Standard library functions that call the system function: exec

execlp(char *file char *arg0,...NULL) S22ty

argv

execl(char *path,char *arg0,...,NULL)

c:reateI

argv

execle(char *path,char *arg0, ...,NULL,
char **envp)

create

argv

18

execvp(char *file,char **argv)

change file to
path

execv(char *path,
char **argv)

laddj envp

execve(char *path,
char **argv, char **envp)

system
function
exec

L.J. Opalski, slides for “’Operating Systems |I” course

Process UID/GID

® fork () system function copies (real, effective, saved) UID and GID of the
parent to the child process

® A process which operates with effective UID==0 can change with setuid ()
its real UID and with setgid () its real GID to any registered in the system

" exec function usually preserves (real, effective, saved) UID and GID of the
calling process. However, if a setuid is set in the i-node of the executable
program, then the effective and saved UIDs of the newly started process
become equal to the UID of the file owner; the real user identifier is
untouched. Similarly the setgid bit changes the effective and saved GIDs of
the program. The new program can switch the effective UID/GID between
saved set-user-ID and real UID values.

" setuid/setgid bits give ,ordinary users” the same access to system
objects as those available to owners of the executable programs (that have
set these bits).

" Use of setuidi setgid bits is discouraged, because the mechanisms can
degrade system security.

19 L.J. Opalski, slides for “’Operating Systems |I” course

Process groups

" Process group — a collection of processes that permits the signaling of
related processes. Each process is a member of a process group that is
identified by a process group ID (leader PID). A newly created process joins
the process group of its creator, but later can become leader of a new group.

® Session — a collection of process groups established for job control
purposes (process suspend/resume, fg/bg, control of terminal use). Each
process group is a member of a session. A newly created process joins the
session of its creator. A process can alter its session membership.

" Controlling Terminal — a terminal that is associated with a session. Each
session may have at most one controlling terminal associated with it, and a
controlling terminal is associated with exactly one session. Certain input
sequences from the controlling terminal cause signals to be sent to all
processes in the foreground process group associated with the terminal.

" Processes in the foreground job of a controlling terminal have unrestricted
access to that terminal; processes of the background process group do not

® Job - a set of processes, comprising a shell pipeline, and any processes
descended from it, that are all in the same process group.

20 L.J. Opalski, slides for “’Operating Systems |I” course

Login shell — traditional Unix view

® Process init creates a child process getty (or alike), which determines initial
parameters of a terminal connection and starts waiting for a user login name.

" login proces reads user password, calculates its hash and compares it to the
value stored in file /etc/shadow (or in another system location). Upon match
the process sets new real UID and GID — according to /etc/passwd

" Finally exec function is called, starting run of a login shell — as defined in
/etc/passwd file

init, PID=1
ifork
init]))
’ PID=pidl lexec exec [PID=pid3
getty | | getty getty)

exec > PID=pid2

Y
login

exec
— /

L.J. Opalski, slides for “’Operating Systems |I” course

