
L.J. Opalski, slides for “”Operating Systems I” course
1

Processes @ POSIX/UNIX/Linux

POSIX 1003.1

„Process – an address space with one or more threads executing within

that address space, and the required system resources for those threads”.

Note: Many of the system resources defined by IEEE Std 1003.1-2001 are

shared among all of the threads within a process. These include the

process ID, the parent process ID, process group ID, session membership,

real, effective, and saved set-user-ID, real, effective, and saved set-group-

ID, supplementary group IDs, current working directory, root directory, file

mode creation mask, and file descriptors.

Last modification date: 21.10.2019

L.J. Opalski, slides for “”Operating Systems I” course
2

Unix processes

▪ A process is a program in execution

▪ Processes are identified by their process identifier (PID), an integer

▪ Each process performs its operation on behalf of a user, characterized with a

unique user id (UID) and a group id (GID). UID and GID determine access

rights to system resources

▪ Linux defines personality identifiers that can modify semantics of some

system calls (to make the calls compatible with variants of UNIX)

Example. Displaying processes of a user lopalski (UID=1253)

$ ps -lu lopalski

F S UID PID PPID C PRI NI ADDR SZ WCHAN TTY TIME CMD

8 O 1253 14457 14379 0 50 20 ? 142 pts/24 0:00 ps

8 S 1253 14379 14364 0 50 20 ? 423 ? pts/24 0:00 zsh

L.J. Opalski, slides for “”Operating Systems I” course
3

Unix processes – cont.
▪ All processes are descendants of an initial system process running with PID=1,

UID=0, GID=1 (init or its equivalent, notably systemd).

Example. Gnu/Linux/Debian – system processes
UID PID PPID C STIME TTY TIME CMD

root 1 0 1 16:40 ? 00:00:01 init [2]

root 2 1 0 16:40 ? 00:00:00 [ksoftirqd/0]

root 3 1 2 16:40 ? 00:00:02 [events/0]

root 4 3 0 16:40 ? 00:00:00 [khelper]

root 5 3 0 16:40 ? 00:00:00 [kacpid]

root 29 3 0 16:40 ? 00:00:00 [kblockd/0]

root 39 3 0 16:40 ? 00:00:00 [pdflush]

root 40 3 0 16:40 ? 00:00:00 [pdflush]

root 41 1 0 16:40 ? 00:00:00 [kswapd0]

root 42 3 0 16:40 ? 00:00:00 [aio/0]

.........

daemon 1419 1 0 16:40 ? 00:00:00 /sbin/portmap

root 1753 1 0 16:40 ? 00:00:00 /sbin/syslogd

root 1756 1 0 16:40 ? 00:00:00 /sbin/klogd

.........

root 1797 1 0 16:40 ? 00:00:00 /usr/sbin/inetd

lp 1801 1 0 16:40 ? 00:00:00 /usr/sbin/lpd -s

root 1808 1 0 16:40 ? 00:00:00 /usr/sbin/sshd

root 1857 1 0 16:40 tty2 00:00:00 /sbin/getty 38400 tty2

.........

L.J. Opalski, slides for “”Operating Systems I” course
4

Unix processes – cont.
The number, names, PIDs, UIDs/GIDs of system processes differ between UNIX-

alike systems, but the init/systemd process always exists, has the same PID,
UID, GID and mission

Example. SunOS 5.9 – selected system processes
UID PID PPID C STIME TTY TIME CMD

root 0 0 0 04:52:16 ? 0:01 sched

root 1 0 0 04:52:16 ? 0:03 /etc/init -

root 2 0 0 04:52:16 ? 0:00 pageout

root 3 0 1 04:52:16 ? 24:56 fsflush

...

root 282 1 0 04:52:46 ? 0:01 /usr/sbin/rpcbind

root 305 1 0 04:52:47 ? 0:00 /usr/sbin/inetd -s

root 372 1 0 04:52:49 ? 0:55 /usr/lib/autofs/automountd

root 367 1 0 04:52:48 ? 0:00 /usr/lib/nfs/lockd

daemon 369 1 0 04:52:48 ? 0:00 /usr/lib/nfs/statd

root 400 1 0 04:52:49 ? 0:00 /usr/sbin/cron

...

root 1183 1135 0 15:59:16 ? 0:00 dtgreet -display :17

...

L.J. Opalski, slides for “”Operating Systems I” course
5

Run-time process environment

▪ Environment variables are process-accessible strings of the form:

name=value

Common environment variables::

PATH - a list of paths to programs/scripts which are directly accessible to system shell
as external

HOME - home directory of a logged in user
PWD - current directory of a shell
PS1, PS2 – first and second level shell prompts
TERM - terminal type connected to the shell
SHELL - current shell
LOGNAME –logged in user name
RANDOM- random number
EDITOR - current (default) user editor
PPID - identifier of the parent process

▪ Environment variables are inherited by a child process created with fork()

function call. For execle(), execve() calls the set of environment
variables can be defined anew; for other functions of exec group – the
environment variables are not changed.

L.J. Opalski, slides for “”Operating Systems I” course
6

Run-time proces environment

▪ Shell maintains a list of variables. Typical command that creates/assigns
value to the variable is

variable_name=variable_value

The command

export variable_name

makes the named variable available to newly created children as their
environment variable. Values of the variables can be retrieved by a
process:

▪ A C language program can create/modify an environment variables using

putenv(”name=value”);

▪ in a C-program, a value of an environment variable can be retrieved
using getenv() function, e.g.:

char *p=getenv(”name”);

if(p) printf (”name=%s\n”,p);

else printf(„variable name is undefined\n”);

L.J. Opalski, slides for “”Operating Systems I” course
7

Run-time proces environment

POSIX:

At program start-up, three streams are predefined and need not be

opened explicitly:

▪ standard input (for reading conventional input),

▪ standard output (for writing conventional output), and

▪ standard error (for writing diagnostic output).

When opened, the standard error stream is not fully buffered; the

standard input and standard output streams are fully buffered if and

only if the stream can be determined not to refer to an interactive

device.

L.J. Opalski, slides for “”Operating Systems I” course
8

Process: from creation till termination

From process creation (system function exec) till
process termination (system function exit)

user or system library
functions

the main function of a

user program

startup procedure

kernel

system library
function

exit

system library
function

_exit

return

call return

calling a system function: exit

exit _exit

system function exec system function exit

call

program call

L.J. Opalski, slides for “”Operating Systems I” course
9

Process life-cycle

▪ Process control system calls :

▪ fork creates a new process (a logical copy of the parent process)

▪ exec is used after a fork to replace one of the two processes’ virtual memory

space with a new program

▪ _exit function terminates process, storing termination status

▪ A parent may wait for a child process to terminate; wait provides PID and

status of a terminated child so that the parent can tell which child terminated

and why.

pid_t pid1, pid2;

pid1 = fork(); /* duplicating the current process */

if (pid1 < 0) { perror("Fork failed"); exit(1);

} else if (pid1 == 0) { /* child process */

execl("/bin/ls", "ls", „-l", NULL); /* Exit code of this process depends here on the code of /bin/ls */

perror(”execlp”); /* this line gets executed ONLY when execl() failed */ exit(2);

} else { /* parent process */

if((pid2=wait (&status))>0){/* waiting for a child */

fprintf (stderr, "Potomek: PID=%d, status=%d\n”,(int)pid2,status);

} else { perror(”wait”); exit(3); }

return(0); /* same as exit(0) */

}

}

L.J. Opalski, slides for “”Operating Systems I” course
10

Process life-cycle

▪ Child process resulting from fork() call inherits from its parent:

▪ Content of the address space (except for a value returned by fork()
call itself.

▪ File descriptors

▪ Environment variables

▪ Mapping of files into memory (mmap())

▪ Signal handling

▪ Priority and scheduling policy

▪ Child process does not inherit

▪ State of process timers

▪ Awaiting signals

▪ Asynchronous operations

▪ Threads, other than that which made the fork() call

L.J. Opalski, slides for “”Operating Systems I” course
11

Process life-cycle

▪ A process resulting from exec system call inherits the caller:

▪ PID, PPID,PGID, RUID, RGID, state of alarms

▪ Current and home directories, umask, ulimit

▪ File descriptors, except these which were marked as close-on-exec

▪ Environment variables – if not modified call through execle(),
execve() library functions

▪ Control terminal

▪ Resource limits

▪ Signal mask and waiting signals, Note, that default signals with default
disposition (SIG_DFL) and ignored (SIG_IGN) keep the signal handling –
except SIGCHLD (if it was ignored – SIG_DFL or SIG_IGN disposition
results). Signals, which had their user handler set change their
disposition to default.

▪ Status of the floating point unit is reset to initial

▪ Counter of CPU use is not reset..

L.J. Opalski, slides for “”Operating Systems I” course
12

Process life-cycle – cont.
▪ There are two kinds of termination:

▪ Normal: by a return from main(), when requested with the exit() , _exit() functions;

▪ Abnormal: when requested by the abort() or when some signals are received.

▪ Upon termination the process file descriptors, directory streams, conversion descriptors,
and message catalog descriptors open in the calling process shall be closed.

▪ If the parent process of the calling process has set its SA_NOCLDWAIT flag or has set
the action for the SIGCHLD signal to SIG_IGN

▪ the process’ status information shall be discarded and the lifetime of the calling
process shall end immediately.

▪ Otherwise, status information shall be generated, and the terminating process
shall be transformed into a zombie process. The status information shall be made
available to the parent process (via wait(), waitid() or waitpid() until the process’
lifetime ends. Besides SIGCHLD shall be sent to the parent process.

▪ A zombie process - the remains of a live process after it terminates and before its
status information is consumed by its parent process.

▪ Orphaned process – a process whose parent process has exited.

▪ After parent’s lifetime has ended, its child processes are inherited by an
implementation-defined system process (init/system,…). Note: for UNIX that system
“substitute parent” process has PID==1. POSIX does not impose PID==1 requirement.

L.J. Opalski, slides for “”Operating Systems I” course
13

Process creation/control/termination

pid_t fork(void)

creates a logical copy of the current process; returns:

–1 when fails (error code in errno)

0 when stepping into the child process

>0 (child PID) when returning to the parent process

pid_t vfork(void)

creates a logical copy of the current process, which shares address space

with the parent process. The parent process is stopped till the child process
calls exec() or _exit() system functions. The child should not call library

exit() function, since it flushes I/O buffers and closes open descriptors

(which are shared with the parent). Using vfork() for large processes

saves system effort on creation a copy of the parent – if the child immediately
calls exec and so discards the allocated resources. Not a POSIX function.

L.J. Opalski, slides for “”Operating Systems I” course
14

Process creation/control/termination – cont.

int clone(int (*fn)(void *), void *child_stack,

int flags, void *arg)

creates a new process, that can share a selected subset of parent’s context.
The new proces executes fn(arg) (compare to fork() !), and when this

function executes return – the child is terminated (unless it calls exit function

or dies because of a signal). child_stack points at a sufficiently large memory
object, that can be used for stack of the new process. Bits of flags select

what is to be shared. Symbolically:

▪ CLONE_PARENT – sharing PPID of the parent process

▪ CLONE_FS – sharing file system root, current directory, umask

▪ CLONE_FILES – sharing the file descriptor table

▪ CLONE_SIGHAND – sharing signal table

▪ CLONE_VM – sharing virtual memory

Additionally:

▪ CLONE_VFORK - stops the parent process, until the child terminates

clone returns the thread id (TID) of the child process, or –1 (errno)

Note: clone is not a POSIX function.

L.J. Opalski, slides for “”Operating Systems I” course
15

Process creation/control/termination – cont.

pid_t wait(int *pstatus)

is waiting for a child process to terminate, returning its PID. The function returns

–1 on error (eg. when no child, terminated nor active, exists). On success, when

status!=NULL => status=*pstatus stores information on reason of process

termination. The information can be portably retrieved with the following macros:

WIFEXITED(status) 1 when the child terminated with exit(), and 0 otherwise

WEXITSTATUS(status) argument of exit(), when WIFEXITED(status)

WIFSIGNALED(status) 1, when child terminated due to signal delivery, 0 -

otherwise

WTERMSIG(status) nr of the lethal signal (when WIFSIGNALED(status))

WIFSTOPPED(status) 1, when the child stopped, 0 - otherwise

WSTOPSIG(status) nr of the stopping signal (when WIFSTOPPED(status))

L.J. Opalski, slides for “”Operating Systems I” course
16

Process creation/control/termination – cont.

pid_t waitpid(pid_t pid, int *pstatus, int options)

is waiting for a sub-process specified with pid:

pid==-1 - any child process

pid< -1 – any child process, which is a member of the group nr |pid|

pid==0 – any child process, from the same group as the caller

pid>0 - the child process with PID==pid

Parameter options is a bit OR of 0, 1 or 2 constants:

WNOHANG – waitpid returns immediately, when no specified child process was

found

WUNTRACED - waitpid returns also, when a child process was stopped..

waitpid returns PID of the child process (if found) or –1 on failure (the exact

reason is specified with the global errno variable).

L.J. Opalski, slides for “”Operating Systems I” course
17

Process creation/control/termination – cont.

void _exit(int status)

a library function that cause immediate termination of a process by a call to a
system function exit. Note: open files are closed without prior flushing
associated buffers. Child processes are adopted by process init, and the
parent process receives signal SIGCHLD (unless it declared to ignore it).

void exit(int status)

a library function that calls _exit after calling user functions previously
registered with atexit() (or on_exit()), after flushing all I/O user buffers
and closing temporary files (created with tmpfile()). If the terminated
process is a leader of a terminal session, then each foreground process of
this terminal session group is sent SIGHUP signal. Furthermore the terminal
session loses its controlling terminal.

The value of status may be 0, EXIT_SUCCESS, EXIT_FAILURE, or any
other value, though only the least significant 8 bits (that is, status & 0377)
shall be available to a waiting parent process.

L.J. Opalski, slides for “”Operating Systems I” course
18

Process creation/control/termination – cont.

Standard library functions that call the system function: exec

execlp(char *file,char *arg0,...,NULL) execvp(char *file,char **argv)

execl(char *path,char *arg0,...,NULL)
execv(char *path,

char **argv)

execle(char *path,char *arg0, ...,NULL,

char **envp)

execve(char *path,

char **argv, char **envp)

system
function
exec

create

argv

create

argv

create

argv

change file to

path

addj envp

L.J. Opalski, slides for “”Operating Systems I” course
19

Process UID/GID

▪ fork() system function copies (real, effective, saved) UID and GID of the

parent to the child process

▪ A process which operates with effective UID==0 can change with setuid()

its real UID and with setgid() its real GID to any registered in the system

▪ exec function usually preserves (real, effective, saved) UID and GID of the

calling process. However, if a setuid is set in the i-node of the executable

program, then the effective and saved UIDs of the newly started process

become equal to the UID of the file owner; the real user identifier is

untouched. Similarly the setgid bit changes the effective and saved GIDs of

the program. The new program can switch the effective UID/GID between

saved set-user-ID and real UID values.

▪ setuid/setgid bits give „ordinary users” the same access to system

objects as those available to owners of the executable programs (that have

set these bits).

▪ Use of setuid i setgid bits is discouraged, because the mechanisms can

degrade system security.

L.J. Opalski, slides for “”Operating Systems I” course
20

Process groups

▪ Process group – a collection of processes that permits the signaling of

related processes. Each process is a member of a process group that is

identified by a process group ID (leader PID). A newly created process joins

the process group of its creator, but later can become leader of a new group.

▪ Session – a collection of process groups established for job control

purposes (process suspend/resume, fg/bg, control of terminal use). Each

process group is a member of a session. A newly created process joins the

session of its creator. A process can alter its session membership.

▪ Controlling Terminal – a terminal that is associated with a session. Each

session may have at most one controlling terminal associated with it, and a

controlling terminal is associated with exactly one session. Certain input

sequences from the controlling terminal cause signals to be sent to all

processes in the foreground process group associated with the terminal.

▪ Processes in the foreground job of a controlling terminal have unrestricted

access to that terminal; processes of the background process group do not.

▪ Job - a set of processes, comprising a shell pipeline, and any processes

descended from it, that are all in the same process group.

L.J. Opalski, slides for “”Operating Systems I” course
21

Login shell – traditional Unix view

▪ Process init creates a child process getty (or alike), which determines initial

parameters of a terminal connection and starts waiting for a user login name.

▪ login proces reads user password, calculates its hash and compares it to the

value stored in file /etc/shadow (or in another system location). Upon match

the process sets new real UID and GID – according to /etc/passwd

▪ Finally exec function is called, starting run of a login shell – as defined in

/etc/passwd file

init

getty

exec

init

getty

exec

init

getty

exec

init, PID=1
fork

fork
fork

PID=pid1

PID=pid2

PID=pid3

login

/bin/sh

exec

exec

pid1, pid2, pid3 są
różne pomiędzy sobą i
różne od 1

...

