
Adaptation of Silberschatz, Galvin, Gagne slides for the textbook

„Applied Operating Systems Concepts”
1

Processes

1. Process Concept

2. Process Scheduling

3. Operations on Processes. Interprocess 

communication and synchronization

L.J. Opalski, slides for „Operating Systems I”  course

Last modification date: 09.10.2016



Adaptation of Silberschatz, Galvin, Gagne slides for the textbook

„Applied Operating Systems Concepts”
2

Process Concept

 An operating system executes a variety of programs:

 Batch system – jobs

 Time-shared systems – user programs or tasks

 Textbook uses the terms job and process almost 
interchangeably

 Process – a program in execution; process execution 
must progress in sequential fashion (one exec. thread)

 Multiple parts

 The program code, also called text section

 Current activity including program counter, 

processor registers

 Stack containing temporary data

• Function parameters, return addresses, local 

variables

 Data section containing global & static variables

 Heap containing memory dynamically allocated 

during run time

L.J. Opalski, slides for „Operating Systems I”  course



Adaptation of Silberschatz, Galvin, Gagne slides for the textbook

„Applied Operating Systems Concepts”
3

Process States

 As a process executes, it changes state

 new:  The process is being created

 running:  Instructions are being executed

 waiting:  The process is waiting for some event to occur

 ready:  The process is waiting to be assigned to a processor

 terminated:  The process has finished execution

L.J. Opalski, slides for „Operating Systems I”  course



Adaptation of Silberschatz, Galvin, Gagne slides for the textbook

„Applied Operating Systems Concepts”
4

Process states – cont.

Diagram of process state for a system with virtual memory

L.J. Opalski, slides for „Operating Systems I”  course 



Adaptation of Silberschatz, Galvin, Gagne slides for the textbook

„Applied Operating Systems Concepts”
5

Process Control Block (PCB)

Information associated with each process 

(also called task control block)

 Process state – running, waiting, etc..

 Program counter – location of instruction 

to next execute

 CPU registers – contents of all process-

centric registers

 CPU scheduling information- priorities, 

scheduling queue pointers

 Memory-management information –

memory allocated to the process

 Accounting information – CPU used, clock 

time elapsed since start, time limits

 I/O status information – I/O devices 

allocated to process, list of open files

L.J. Opalski, slides for „Operating Systems I”  course



Adaptation of Silberschatz, Galvin, Gagne slides for the textbook

„Applied Operating Systems Concepts”
6

CPU Switch From Process to Process

Reasons for process interrupt:

 Timer interrupt

 Device interrupt

 System function call.

 Triggering a trap

The above events can cause 

CPU switch from process to 

process; decision is made 

by CPU scheduler .

L.J. Opalski, slides for „Operating Systems I”  course



Adaptation of Silberschatz, Galvin, Gagne slides for the textbook

„Applied Operating Systems Concepts”
7

Context Switch

 When CPU switches to another process, the system must save 

the state of the old process and load the saved state for the 

new process via a context switch

 Context of a process is represented in the PCB

 Context-switch time is overhead; the system does no useful work 

while switching

 The more complex the OS and the PCB  the longer the 

context switch

 Time dependent on hardware support

 Some hardware provides multiple sets of registers per CPU 

 multiple contexts loaded at once

L.J. Opalski, slides for „Operating Systems I”  course



Adaptation of Silberschatz, Galvin, Gagne slides for the textbook

„Applied Operating Systems Concepts”
8

Process Representation in Linux

Represented by the C structure task_struct (<linux/include/linux/sched.h>) 

Selected fields
pid t_pid; /* process identifier */ 

long state; /* state of the process */ 

unsigned int time_slice /* scheduling information */ 

struct task_struct *parent; /* this process’s parent */ 

struct list_head children; /* this process’s children */ 

struct files_struct *files; /* list of open files */ 

struct mm_struct *mm; /* address space of this process */

state values
#define TASK_RUNNING 0 

#define TASK_INTERRUPTIBLE      1

#define TASK_UNINTERRUPTIBLE 2

#define TASK_STOPPED 4

#define TASK_TRACED 8 

/* in tsk->exit_state */

#define EXIT_DEAD 16 

#define EXIT_ZOMBIE 32 

#define EXIT_TRACE (EXIT_ZOMBIE|EXIT_DEAD)

/* in tsk->state again */

#define TASK_DEAD 64 

#define TASK_WAITKILL 128 

#define TASK_WAKING 256 

#define TASK_PARKED 512 

#define TASK_STATE_MAX 1024

L.J. Opalski, slides for „Operating Systems I”  course



Adaptation of Silberschatz, Galvin, Gagne slides for the textbook

„Applied Operating Systems Concepts”
9

Processes

1. Process Concept

2. Process Scheduling

3. Operations on Processes. Interprocess 

communication and synchronization

L.J. Opalski, slides for „Operating Systems I”  course



Adaptation of Silberschatz, Galvin, Gagne slides for the textbook

„Applied Operating Systems Concepts”
10

Process Scheduling

 Maximize CPU use, quickly switch processes onto CPU for time 

sharing

 Process scheduler selects among available processes for next 

execution on CPU

 Maintains scheduling queues of processes

 Job queue – set of all processes in the system

 Ready queue – set of all processes residing in main 

memory, ready and waiting to execute

 Device queues – set of processes waiting for an I/O device

 Processes migrate among the various queues

L.J. Opalski, slides for „Operating Systems I”  course



Adaptation of Silberschatz, Galvin, Gagne slides for the textbook

„Applied Operating Systems Concepts”
11

Ready Queue And Various I/O Device Queues

L.J. Opalski, slides for „Operating Systems I”  course



Adaptation of Silberschatz, Galvin, Gagne slides for the textbook

„Applied Operating Systems Concepts”
12

Representation of Process Scheduling

 Queueing diagram represents queues, resources, flows

L.J. Opalski, slides for „Operating Systems I”  course



Adaptation of Silberschatz, Galvin, Gagne slides for the textbook

„Applied Operating Systems Concepts”
13

Schedulers

 A process can be described as either:

 I/O-bound process – spends more time doing I/O than 

computations, many short CPU bursts

 CPU-bound process – spends more time doing computations; few 

very long CPU bursts

 Short-term scheduler  (or CPU scheduler) – selects which process 

should be executed next and allocates CPU

 Sometimes the only scheduler in a system

 Short-term scheduler is invoked frequently (milliseconds)  (must 

be fast)

 Long-term scheduler  (or job scheduler) – selects which processes 

should be brought into the ready queue

 Long-term scheduler is invoked  infrequently (seconds, minutes) 

(may be slow)

 The long-term scheduler controls the degree of multiprogramming

 Strives for good process mix

L.J. Opalski, slides for „Operating Systems I”  course



Adaptation of Silberschatz, Galvin, Gagne slides for the textbook

„Applied Operating Systems Concepts”
14

Addition of Medium Term Scheduling

In some systems medium term scheduler  is used to protect the 

system from too large degree of multiprogramming, by removing a 

process from memory, storing it on disk and bringing it back later from 

disk to memory to continue execution (swapping  in/out)

L.J. Opalski, slides for „Operating Systems I”  course



Adaptation of Silberschatz, Galvin, Gagne slides for the textbook

„Applied Operating Systems Concepts”
15

Processes

1. Process Concept

2. Process Scheduling

3. Operations on Processes. Interprocess 

communication and synchronization

L.J. Opalski, slides for „Operating Systems I”  course



Adaptation of Silberschatz, Galvin, Gagne slides for the textbook

„Applied Operating Systems Concepts”
16

Operations on Processes

System must provide mechanisms for:

 process creation,

 process termination, 

 communication and synchronization

L.J. Opalski, slides for „Operating Systems I”  course



Adaptation of Silberschatz, Galvin, Gagne slides for the textbook

„Applied Operating Systems Concepts”
17

Process Creation

 Parent process create children processes, which in turn create 

other processes, forming a tree of processes

 Generally, process identified and managed via a process 

identifier (pid)

 Resource sharing options

 Parent and children share all resources

 Children share subset of parent’s resources

 Parent and child share no resources

 Execution options

 Parent and children execute concurrently

 Parent waits until children terminate

L.J. Opalski, slides for „Operating Systems I”  course



Adaptation of Silberschatz, Galvin, Gagne slides for the textbook

„Applied Operating Systems Concepts”
18

Process Creation (Cont.)

 Address space

 Child duplicate of parent

 Child has a program loaded into it

 UNIX examples

 fork() system call creates new process

 exec() system call used after a fork() to replace the 

process’ memory space with a new program

L.J. Opalski, slides for „Operating Systems I”  course



Adaptation of Silberschatz, Galvin, Gagne slides for the textbook

„Applied Operating Systems Concepts”
19

POSIX proces creation
#include <stdio.h>

#include <sys/types.h>

#include <unistd.h>

int main(){

pid_t pid1, pid2;

int status;

pid1 = fork(); /* fork a child process*/

if (pid1 < 0) { /* error occurred */

perror("Fork failed"); exit(1);

} else if (pid1 == 0) { /* child process */

execl("/bin/ls", "ls", " -l”,NULL); /* overwriting the child proces 

memory with new program */

perror(”execlp”);  exit(2);/* executed only if execl fails */

} else { /* parent process */

if((pid2=wait (&status))>0){/* waiting for the child proces to complete */

fprintf (stderr,„Potomek: PID=%d, status=%d,(int)pid2,status);

} else {

perror(”wait”);  exit(3); /* wait() error */

}

return(0); /* alternatively: exit(0) */

}

}
L.J. Opalski, slides for „Operating Systems I”  course



Adaptation of Silberschatz, Galvin, Gagne slides for the textbook

„Applied Operating Systems Concepts”
20

A Tree of Processes in Linux

i ni t

pi d = 1

s s hd

pi d = 3028

l ogi n

pi d = 8415
kt hr e add

pi d = 2

s s hd

pi d = 3610
pdf l us h

pi d = 200

khe l pe r

pi d = 6

t c s c h

pi d = 4005
e mac s

pi d = 9204

bas h

pi d = 8416

ps

pi d = 9298

L.J. Opalski, slides for „Operating Systems I”  course

Note: in contemporary systems systemd process can be run with pid=1, 

instead of init



Adaptation of Silberschatz, Galvin, Gagne slides for the textbook

„Applied Operating Systems Concepts”
21

Creating a Separate Process via Windows API
#include <windows.h>

#include <stdio.h>

int main( VOID ){

STARTUPINFO si;

PROCESS_INFORMATION pi;

ZeroMemory( &si, sizeof(si) ); si.cb = sizeof(si);ZeroMemory( &pi, sizeof(pi) );

//  Start the child process.

if( !CreateProcess( NULL,   // No module name (use command line).

"C:\\WINDOWS\\system32\\notepad.exe", // Command line.

NULL,             // Process handle not inheritable.

NULL,             // Thread handle not inheritable.

FALSE,            // Set handle inheritance to FALSE.

0,                // No creation flags.

NULL,             // Use parent's environment block.

NULL,             // Use parent's starting directory.

&si,              // Pointer to STARTUPINFO structure.

&pi )             // Pointer to PROCESS_INFORMATION structure.

) {        fprintf(stderr, "CreateProcess failed (%d).\n", GetLastError() );      

return -1;    }

WaitForSingleObject( pi.hProcess, INFINITE ); // Wait until child process exits.

CloseHandle( pi.hProcess );    CloseHandle( pi.hThread ); // Close process and thread

handles.

}

L.J. Opalski, slides for „Operating Systems I”  course



Adaptation of Silberschatz, Galvin, Gagne slides for the textbook

„Applied Operating Systems Concepts”
22

Execution of a system command -

standard C library
#include <stdlib.h>

#include <stdio.h>

int main( void){

char buf[512];

if(fgets(buf, sizeof(buf), stdin)){/* reading cmd */

int ret;

/* execution of a command in a system shell subprocess */

ret=system(buf); 

if(ret) fprintf(stderr,”ret=%d\n”,ret);

return ret;

}

return 0;

}

L.J. Opalski, slides for „Operating Systems I”  course



Adaptation of Silberschatz, Galvin, Gagne slides for the textbook

„Applied Operating Systems Concepts”
23

Process Termination

 Process can ask the operating system to delete it using a system call (POSIX/C: 
exit()).

 Returns  status data from child to parent (POSIX: via wait()). Also In 

POSIX:

• if no parent waiting (did not invoke wait()) process is a zombie

• If parent terminated without invoking wait , process is an orphan

 Process’ resources are deallocated by operating system

 Parent may terminate the execution of children processes  using a system call 
(e.g. TerminateProcess() in Win32).  Some reasons for doing so:

 Child has exceeded allocated resources

 Task assigned to child is no longer required

 The parent is exiting and the operating systems does not allow  a child to 

continue if its parent terminates

 Some operating systems do not allow child to exists if its parent has terminated.  If 

a process terminates, then all its children must also be terminated.

 cascading termination.  All children, grandchildren, etc.  are  terminated.

 The termination is initiated by the operating system

L.J. Opalski, slides for „Operating Systems I”  course



Adaptation of Silberschatz, Galvin, Gagne slides for the textbook

„Applied Operating Systems Concepts”
24

Interprocess Communication

 Processes within a system may be independent or cooperating

 Cooperating process can affect or be affected by other processes, 

including sharing data

 Reasons for cooperating processes:

 Information sharing

 Computation speedup

 Modularity

 Convenience

 Cooperating processes need interprocess communication (IPC)

 Two models of IPC

 Shared memory

 Message passing

L.J. Opalski, slides for „Operating Systems I”  course



Adaptation of Silberschatz, Galvin, Gagne slides for the textbook

„Applied Operating Systems Concepts”
25

Communications Models 

(a) Message passing.  (b) shared memory. Correct use of 

R/W operations requires synchronization (critical section)  

L.J. Opalski, slides for „Operating Systems I”  course


