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Processes

1. Process Concept

2. Process Scheduling

3. Operations on Processes. Interprocess 

communication and synchronization
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Process Concept

 An operating system executes a variety of programs:

 Batch system – jobs

 Time-shared systems – user programs or tasks

 Textbook uses the terms job and process almost 
interchangeably

 Process – a program in execution; process execution 
must progress in sequential fashion (one exec. thread)

 Multiple parts

 The program code, also called text section

 Current activity including program counter, 

processor registers

 Stack containing temporary data

• Function parameters, return addresses, local 

variables

 Data section containing global & static variables

 Heap containing memory dynamically allocated 

during run time
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Process States

 As a process executes, it changes state

 new:  The process is being created

 running:  Instructions are being executed

 waiting:  The process is waiting for some event to occur

 ready:  The process is waiting to be assigned to a processor

 terminated:  The process has finished execution
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Process states – cont.

Diagram of process state for a system with virtual memory
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Process Control Block (PCB)

Information associated with each process 

(also called task control block)

 Process state – running, waiting, etc..

 Program counter – location of instruction 

to next execute

 CPU registers – contents of all process-

centric registers

 CPU scheduling information- priorities, 

scheduling queue pointers

 Memory-management information –

memory allocated to the process

 Accounting information – CPU used, clock 

time elapsed since start, time limits

 I/O status information – I/O devices 

allocated to process, list of open files
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CPU Switch From Process to Process

Reasons for process interrupt:

 Timer interrupt

 Device interrupt

 System function call.

 Triggering a trap

The above events can cause 

CPU switch from process to 

process; decision is made 

by CPU scheduler .
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Context Switch

 When CPU switches to another process, the system must save 

the state of the old process and load the saved state for the 

new process via a context switch

 Context of a process is represented in the PCB

 Context-switch time is overhead; the system does no useful work 

while switching

 The more complex the OS and the PCB  the longer the 

context switch

 Time dependent on hardware support

 Some hardware provides multiple sets of registers per CPU 

 multiple contexts loaded at once
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Process Representation in Linux

Represented by the C structure task_struct (<linux/include/linux/sched.h>) 

Selected fields
pid t_pid; /* process identifier */ 

long state; /* state of the process */ 

unsigned int time_slice /* scheduling information */ 

struct task_struct *parent; /* this process’s parent */ 

struct list_head children; /* this process’s children */ 

struct files_struct *files; /* list of open files */ 

struct mm_struct *mm; /* address space of this process */

state values
#define TASK_RUNNING 0 

#define TASK_INTERRUPTIBLE      1

#define TASK_UNINTERRUPTIBLE 2

#define TASK_STOPPED 4

#define TASK_TRACED 8 

/* in tsk->exit_state */

#define EXIT_DEAD 16 

#define EXIT_ZOMBIE 32 

#define EXIT_TRACE (EXIT_ZOMBIE|EXIT_DEAD)

/* in tsk->state again */

#define TASK_DEAD 64 

#define TASK_WAITKILL 128 

#define TASK_WAKING 256 

#define TASK_PARKED 512 

#define TASK_STATE_MAX 1024
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Process Scheduling

 Maximize CPU use, quickly switch processes onto CPU for time 

sharing

 Process scheduler selects among available processes for next 

execution on CPU

 Maintains scheduling queues of processes

 Job queue – set of all processes in the system

 Ready queue – set of all processes residing in main 

memory, ready and waiting to execute

 Device queues – set of processes waiting for an I/O device

 Processes migrate among the various queues
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Ready Queue And Various I/O Device Queues
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Representation of Process Scheduling

 Queueing diagram represents queues, resources, flows
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Schedulers

 A process can be described as either:

 I/O-bound process – spends more time doing I/O than 

computations, many short CPU bursts

 CPU-bound process – spends more time doing computations; few 

very long CPU bursts

 Short-term scheduler  (or CPU scheduler) – selects which process 

should be executed next and allocates CPU

 Sometimes the only scheduler in a system

 Short-term scheduler is invoked frequently (milliseconds)  (must 

be fast)

 Long-term scheduler  (or job scheduler) – selects which processes 

should be brought into the ready queue

 Long-term scheduler is invoked  infrequently (seconds, minutes) 

(may be slow)

 The long-term scheduler controls the degree of multiprogramming

 Strives for good process mix
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Addition of Medium Term Scheduling

In some systems medium term scheduler  is used to protect the 

system from too large degree of multiprogramming, by removing a 

process from memory, storing it on disk and bringing it back later from 

disk to memory to continue execution (swapping  in/out)
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Operations on Processes

System must provide mechanisms for:

 process creation,

 process termination, 

 communication and synchronization
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Process Creation

 Parent process create children processes, which in turn create 

other processes, forming a tree of processes

 Generally, process identified and managed via a process 

identifier (pid)

 Resource sharing options

 Parent and children share all resources

 Children share subset of parent’s resources

 Parent and child share no resources

 Execution options

 Parent and children execute concurrently

 Parent waits until children terminate
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Process Creation (Cont.)

 Address space

 Child duplicate of parent

 Child has a program loaded into it

 UNIX examples

 fork() system call creates new process

 exec() system call used after a fork() to replace the 

process’ memory space with a new program
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POSIX proces creation
#include <stdio.h>

#include <sys/types.h>

#include <unistd.h>

int main(){

pid_t pid1, pid2;

int status;

pid1 = fork(); /* fork a child process*/

if (pid1 < 0) { /* error occurred */

perror("Fork failed"); exit(1);

} else if (pid1 == 0) { /* child process */

execl("/bin/ls", "ls", " -l”,NULL); /* overwriting the child proces 

memory with new program */

perror(”execlp”);  exit(2);/* executed only if execl fails */

} else { /* parent process */

if((pid2=wait (&status))>0){/* waiting for the child proces to complete */

fprintf (stderr,„Potomek: PID=%d, status=%d,(int)pid2,status);

} else {

perror(”wait”);  exit(3); /* wait() error */

}

return(0); /* alternatively: exit(0) */

}

}
L.J. Opalski, slides for „Operating Systems I”  course
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A Tree of Processes in Linux
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Creating a Separate Process via Windows API
#include <windows.h>

#include <stdio.h>

int main( VOID ){

STARTUPINFO si;

PROCESS_INFORMATION pi;

ZeroMemory( &si, sizeof(si) ); si.cb = sizeof(si);ZeroMemory( &pi, sizeof(pi) );

//  Start the child process.

if( !CreateProcess( NULL,   // No module name (use command line).

"C:\\WINDOWS\\system32\\notepad.exe", // Command line.

NULL,             // Process handle not inheritable.

NULL,             // Thread handle not inheritable.

FALSE,            // Set handle inheritance to FALSE.

0,                // No creation flags.

NULL,             // Use parent's environment block.

NULL,             // Use parent's starting directory.

&si,              // Pointer to STARTUPINFO structure.

&pi )             // Pointer to PROCESS_INFORMATION structure.

) {        fprintf(stderr, "CreateProcess failed (%d).\n", GetLastError() );      

return -1;    }

WaitForSingleObject( pi.hProcess, INFINITE ); // Wait until child process exits.

CloseHandle( pi.hProcess );    CloseHandle( pi.hThread ); // Close process and thread

handles.

}
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Execution of a system command -

standard C library
#include <stdlib.h>

#include <stdio.h>

int main( void){

char buf[512];

if(fgets(buf, sizeof(buf), stdin)){/* reading cmd */

int ret;

/* execution of a command in a system shell subprocess */

ret=system(buf); 

if(ret) fprintf(stderr,”ret=%d\n”,ret);

return ret;

}

return 0;

}
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Process Termination

 Process can ask the operating system to delete it using a system call (POSIX/C: 
exit()).

 Returns  status data from child to parent (POSIX: via wait()). Also In 

POSIX:

• if no parent waiting (did not invoke wait()) process is a zombie

• If parent terminated without invoking wait , process is an orphan

 Process’ resources are deallocated by operating system

 Parent may terminate the execution of children processes  using a system call 
(e.g. TerminateProcess() in Win32).  Some reasons for doing so:

 Child has exceeded allocated resources

 Task assigned to child is no longer required

 The parent is exiting and the operating systems does not allow  a child to 

continue if its parent terminates

 Some operating systems do not allow child to exists if its parent has terminated.  If 

a process terminates, then all its children must also be terminated.

 cascading termination.  All children, grandchildren, etc.  are  terminated.

 The termination is initiated by the operating system
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Interprocess Communication

 Processes within a system may be independent or cooperating

 Cooperating process can affect or be affected by other processes, 

including sharing data

 Reasons for cooperating processes:

 Information sharing

 Computation speedup

 Modularity

 Convenience

 Cooperating processes need interprocess communication (IPC)

 Two models of IPC

 Shared memory

 Message passing
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Communications Models 

(a) Message passing.  (b) shared memory. Correct use of 

R/W operations requires synchronization (critical section)  
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