Processes

1. Process Concept

N

. Process Scheduling

3. Operations on Processes. Interprocess
communication and synchronization

Last modification date: 09.10.2016

L.J. Opalski, slides for ,Operating Systems I” course 1 Adaptation of Silberschatz, Galvin, Gagne slides for the textbook
»Applied Operating Systems Concepts”

Process Concept

® An operating system executes a variety of programs:

= Batch system — jobs max
= Time-shared systems — user programs or tasks stack

® Textbook uses the terms job and process almost

interchangeably 1

® Process — a program in execution; process execution
must progress in sequential fashion (one exec. thread)

® Multiple parts T
= The program code, also called text section heap
= Current activity including program counter,

processor registers data
= Stack containing temporary data
- Function parameters, return addresses, local text
variables 0
= Data section containing global & static variables
= Heap containing memory dynamically allocated
during run time
L.J. Opalski, slides for ,Operating Systems I” course 5 Adaptation of Silberschatz, Galvin, Gagne slides for the textbook

»Applied Operating Systems Concepts”

Process States

® As a process executes, it changes state
= new: The process is being created
= running: Instructions are being executed
= waiting: The process is waiting for some event to occur
= ready: The process is waiting to be assigned to a processor
= terminated: The process has finished execution

admitted interrupt exit terminated

scheduler dispatch

I/O or event completion I/O or event wait

L.J. Opalski, slides for ,Operating Systems I” course 3 Adaptation of Silberschatz, Galvin, Gagne slides for the textbook
»Applied Operating Systems Concepts”

Process states — cont.

Diagram of process state for a system with virtual memory

not enough memory
(swapping system only)

interrupt

interrupt, sleep wakeup wakeup

interrupt return

swap out

L.J. Opalski, slides for ,Operating Systems I’ course Adaptation of Silberschatz, Galvin, Gagne slides for the textbook

LApplied Operating Systems Concepts”

Process Control Block (PCB)

Information associated with each process

(also called task control block) process state

" Process state — running, waiting, etc.. process number

" Program counter — location of instruction

to next execute program counter

" CPU reqisters — contents of all process- _
centric registers registers

® CPU scheduling information- priorities,

scheduling queue pointers memory limits

" Memory-management information —

memory allocated to the process list of open files

® Accounting information — CPU used, clock
time elapsed since start, time limits

® 1/O status information — I/O devices
allocated to process, list of open files

Adaptation of Silberschatz, Galvin, Gagne slides for the textbook
~Applied Operating Systems Concepts”

L.J. Opalski, slides for ,Operating Systems I’ course 5

CPU Switch From Process to Process

Reasons for process interrupt:

process P, operating system process P,
interrupt or system call " Timer interrupt
executing u
- . .
1O save state into PCB, Device Interrupt
. de ™ System function call.
reload state from PCB, 1 " Triggering a trap
. _ o , The above events can cause
ridle interrupt or system call executing .
CPU switch from process to
. el process; decision is made
save state into 4 b
y CPU scheduler .
. idle
reload state from PCB,

executing ‘U‘¥

L.J. Opalski, slides for ,Operating Systems I” course 6 Adaptation of Silberschatz, Galvin, Gagne slides for the textbook

»Applied Operating Systems Concepts”

Context Switch

®" When CPU switches to another process, the system must save
the state of the old process and load the saved state for the
new process via a context switch

® Context of a process is represented in the PCB
® Context-switch time is overhead; the system does no useful work
while switching
= The more complex the OS and the PCB = the longer the
context switch
" Time dependent on hardware support

= Some hardware provides multiple sets of registers per CPU
=> multiple contexts loaded at once

L.J. Opalski, slides for ,Operating Systems I” course Adaptation of Silberschatz, Galvin, Gagne slides for the textbook

»Applied Operating Systems Concepts”

Process Representation in Linux

Represented by the C structure task struct (<linux/include/linux/sched.h>)

Selected fields
pid t pid; /* process identifier */
long state; /* state of the process */
unsigned int time slice /* scheduling information */
struct task struct *parent; /* this process’s parent */
struct list head children; /* this process’s children */
struct files struct *files; /* list of open files */
struct mm struct *mm; /* address space of this process */

state values

#define TASK_RUNNING 0
#define TASK_INTERRUPTIBLE 1
#define TASK_UNINTERRUPTIBLE 2

#define TASK_STOPPED 4
N NN #define TASK_TRACED 8
/* in tsk->exit_state */
struct task_struct struct task_struct struct task_struct #define EXIT_DEAD 16
process information process information * o0 process information | #define EXIT_ZOMBIE 32
. . . #define EXIT_TRACE (EXIT_ZOMBIE|EXIT_DEAD)
B . . /* in tsk->state again */
o o o #define TASK_DEAD 64
, #define TASK_WAITKILL 128
x__“ W T #define TASK_WAKING 256
T #define TASK_PARKED 512
#define TASK_STATE_MAX 1024
current

(currently executing proccess)
L.J. Opalski, slides for ,Operating Systems I” course Adaptation of Silberschatz, Galvin, Gagne slides for the textbook

»Applied Operating Systems Concepts”

Processes

1. Process Concept
2. Process Scheduling

3. Operations on Processes. Interprocess
communication and synchronization

L.J. Opalski, slides for ,Operating Systems I” course 9 Adaptation of Silberschatz, Galvin, Gagne slides for the textbook
»Applied Operating Systems Concepts”

Process Scheduling

" Maximize CPU use, quickly switch processes onto CPU for time
sharing

" Process scheduler selects among available processes for next
execution on CPU

" Maintains scheduling queues of processes
= Job gueue — set of all processes in the system

= Ready queue — set of all processes residing in main
memory, ready and waiting to execute

= Device queues — set of processes waiting for an I/O device
= Processes migrate among the various queues

L.J. Opalski, slides for ,Operating Systems I” course Adaptation of Silberschatz, Galvin, Gagne slides for the textbook

10 »Applied Operating Systems Concepts”

Ready Queue And Various I/O Device Queues

ready
queue

mag
tape
unit 0

mag
tape
unit 1

disk
unit 0

terminal
unit 0

L.J. Opalski, slides for ,Operating Systems I’ course

11

queue header PCB, PCB,
head > =
tail registers registers
head +—=
taill +——=
head +——=
il PCB, PCB,4 PCBg
/ : |
head 4
PCB;
head » .
@l A+

Adaptation of Silberschatz, Galvin, Gagne slides for the textbook
~Applied Operating Systems Concepts”

Representation of Process Scheduling

®m Queueing diagram represents queues, resources, flows

| readyqueue

/O

L.J. Opalski, slides for ,Operating Systems I’ course

OCCUrs

interrupt

CPU g
/O queue = I/O request =
time slice :
expired
child fork a
@_ child "
@_ wait for an

Adaptation of Silberschatz, Galvin, Gagne slides for the textbook
~Applied Operating Systems Concepts”

Schedulers

® A process can be described as either:

= |/O-bound process — spends more time doing I/O than
computations, many short CPU bursts

= CPU-bound process — spends more time doing computations; few
very long CPU bursts

® Short-term scheduler (or CPU scheduler) — selects which process
should be executed next and allocates CPU

= Sometimes the only scheduler in a system

= Short-term scheduler is invoked frequently (milliseconds) = (must
be fast)

" Long-term scheduler (or job scheduler) — selects which processes
should be brought into the ready queue

= Long-term scheduler is invoked infrequently (seconds, minutes) =
(may be slow)

= The long-term scheduler controls the degree of multiprogramming
= Strives for good process mix

Adaptation of Silberschatz, Galvin, Gagne slides for the textbook
~Applied Operating Systems Concepts”

L.J. Opalski, slides for ,Operating Systems I’ course 13

Addition of Medium Term Scheduling

In some systems medium term scheduler is used to protect the
system from too large degree of multiprogramming, by removing a
process from memory, storing it on disk and bringing it back later from
disk to memory to continue execution (swapping in/out)

swap in partially executed swap out
swapped-out processes

>| ready queue @} » end
I/0O waiting
queues

L.J. Opalski, slides for ,Operating Systems I” course 14 Adaptation of Silberschatz, Galvin, Gagne slides for the textbook
»Applied Operating Systems Concepts”

Processes

1. Process Concept
2. Process Scheduling

3. Operations on Processes. Interprocess
communication and synchronization

L.J. Opalski, slides for ,Operating Systems I” course 15 Adaptation of Silberschatz, Galvin, Gagne slides for the textbook
»Applied Operating Systems Concepts”

Operations on Processes

System must provide mechanisms for:
= process creation,
= process termination,
= communication and synchronization

L.J. Opalski, slides for ,Operating Systems I” course Adaptation of Silberschatz, Galvin, Gagne slides for the textbook

16 »Applied Operating Systems Concepts”

Process Creation

® Parent process create children processes, which in turn create
other processes, forming a tree of processes

® Generally, process identified and managed via a process
identifier (pid)
® Resource sharing options
= Parent and children share all resources
= Children share subset of parent’s resources
= Parent and child share no resources

® Execution options
= Parent and children execute concurrently
= Parent waits until children terminate

Adaptation of Silberschatz, Galvin, Gagne slides for the textbook
~Applied Operating Systems Concepts”

L.J. Opalski, slides for ,Operating Systems I’ course 17

Process Creation (Cont.)

® Address space
= Child duplicate of parent
= Child has a program loaded into it

® UNIX examples
= fork () system call creates new process

= exec () system call used after a fork () to replace the
process’ memory space with a new program

parent -/w_ait\ resumes

- -

child - exec() > exit()

L.J. Opalski, slides for ,Operating Systems I” course Adaptation of Silberschatz, Galvin, Gagne slides for the textbook

18 »Applied Operating Systems Concepts”

POSIX proces creation

#include <stdio.h>
#include <sys/types.h>
#include <unistd.h>
int main () {
pid t pidl, pid2;
int status;
pidl = fork(); /* fork a child process*/

if (pidl < 0) { /* error occurred */

perror ("Fork failed"); exit(1l);
} else if (pidl == 0) { /* child process */
execl ("/bin/1s", "1ls", " -1”,NULL); /* overwriting the child proces

memory with new program */
perror ("execlp”); exit(2);/* executed only if execl fails */

} else { /* parent process */

if ((pid2=wait (&status))>0){/* waiting for the child proces to complete */

fprintf (stderr,,Potomek: PID=%d, status=%d, (int)pid2,status);
} else {

perror ("wait”); exit(3); /* wait() error */

}
return (0); /* alternatively: exit (0) */

}

} L.J. Opalski, slides for ,Operating Systems I” course 19 Adaptation of Silberschatz, Galvin, Gagne slides for the textbook

»Applied Operating Systems Concepts”

A Tree of Processes in Linux

init
pid =1

kt hreadd
pid = 2

login
pid = 8415
bash
pid = 8416
tcsch
ps eMmacs LG
pid = 9298 pid = 9204 pid = 4005

Note: in contemporary systems systemd process can be run with pid=1,
instead of init

L.J. Opalski, slides for ,Operating Systems I’ course

sshd
pid = 3028

sshd
pid = 3610

Adaptation of Silberschatz, Galvin, Gagne slides for the textbook
~Applied Operating Systems Concepts”

Creating a Separate Process via Windows API

#include <windows.h>
#include <stdio.h>

) {
STARTUPINFO si;

int main(VOID

PROCESS INFORMATION pi;

"C:\\WINDOWS\\system32\\notepad.exe",

ZeroMemory (&si, sizeof (s
// Start the child process.
if (!CreateProcess(NULL,
NULL, //
NULL, //
FALSE, //
0, //
NULL, //
NULL, //
&si, //
s&pi) //
) | fprintf (stderr,
return -1; }
WaitForSingleObject(pi.hProcess,
CloseHandle (pi.hProcess
handles.

}

L.J. Opalski, slides for ,Operating Systems I’ course

i)); si.cb =

sizeof (si) ; ZeroMemory (&pi, sizeof (pi)

// No module name (use command line).
// Command line.

Process handle not inheritable.

Thread handle not inheritable.

Set handle inheritance to FALSE.

No creation flags.

Use parent's environment block.

Use parent's starting directory.

Pointer to STARTUPINFO structure.

Pointer to PROCESS INFORMATION structure.
"CreateProcess failed (%d).\n",

GetLastError ());

INFINITE);

CloseHandle (pi.hThread);

// Wait until child process exits.

) ;

// Close process and thread

Adaptation of Silberschatz, Galvin, Gagne slides for the textbook

21 »Applied Operating Systems Concepts”

Execution of a system command -
standard C library

#include <stdlib.h>
#include <stdio.h>
int main(void) {
char buf[512];
if (Egets (buf, sizeof (buf), stdin)){/* reading cmd */
int ret;
/* execution of a command in a system shell subprocess */
ret=system (buf) ;
if (ret) fprintf (stderr,”ret=%d\n”, ret) ;
return ret;

}

return 0O;

L.J. Opalski, slides for ,Operating Systems I” course Adaptation of Silberschatz, Galvin, Gagne slides for the textbook

22 »Applied Operating Systems Concepts”

Process Termination

® Process can ask the operating system to delete it using a system call (POSIX/C:
exit()).
= Returns status data from child to parent (POSIX: viawait ()). Also In
POSIX:
- if no parent waiting (did not invoke wait ()) process is a zombie

- |If parent terminated without invoking wait , process is an orphan
= Process’ resources are deallocated by operating system
® Parent may terminate the execution of children processes using a system call
(e.g. TerminateProcess () in Win32). Some reasons for doing so:
= Child has exceeded allocated resources
= Task assigned to child is no longer required

= The parent is exiting and the operating systems does not allow a child to
continue if its parent terminates

® Some operating systems do not allow child to exists if its parent has terminated. If
a process terminates, then all its children must also be terminated.
= cascading termination. All children, grandchildren, etc. are terminated.
= The termination is initiated by the operating system

L.J. Opalski, slides for ,Operating Systems I” course 23 Adaptation of Silberschatz, Galvin, Gagne slides for the textbook
»Applied Operating Systems Concepts”

L.J. Opalski, slides for ,Operating Systems I’ course

Interprocess Communication

" Processes within a system may be independent or cooperating

" Cooperating process can affect or be affected by other processes,
including sharing data

" Reasons for cooperating processes:
= [nformation sharing
= Computation speedup
= Modularity
= Convenience

® Cooperating processes need interprocess communication (IPC)

®" Two models of IPC
» Shared memory
= Message passing

Adaptation of Silberschatz, Galvin, Gagne slides for the textbook

24 »Applied Operating Systems Concepts”

Communications Models

process A

process B

message queue

— M

M4 |MoMs] ...

Mp

kernel

(a)

process A
L shared memory

process B

kernel

(b)

(a) Message passing. (b) shared memory. Correct use of
R/W operations requires synchronization (critical section)

L.J. Opalski, slides for ,Operating Systems I’ course

25

Adaptation of Silberschatz, Galvin, Gagne slides for the textbook
~Applied Operating Systems Concepts”

