
Adaptacja autorskich slajdów do podręcznika Silberschatz,

Galvin, Gagne , „Podstawy systemów operacyjnych”1

Procesy

1. Koncepcja procesu

2. Planowanie procesów

3. Działania na procesach

4. Procesy współpracujące. Komunikacja i synchronizacja

międzyprocesowa

L.J. Opalski, slajdy do wykładu „Systemy Operacyjne I”

Data ostatniej modyfikacji: 09.10.2016

Adaptacja autorskich slajdów do podręcznika Silberschatz,

Galvin, Gagne , „Podstawy systemów operacyjnych”2

Koncepcja procesu

 System operacyjny wykonuje różnorodne prace:

 system wsadowy - zadania (jobs)

 system z podziałem czasu - programy użytkownika

(user programs) lub zadania użytkownika czy systemu

(tasks)

 W podręczniku terminy zadanie i proces używane są prawie

zamiennie.

 Proces – wykonujący się program; wykonanie procesu musi

być sekwencyjne (jeden wątek sterowania).

 Składowe procesu (nie wyłączne):

 Kod (text section), licznik rozkazów i rejestry procesora

 Stos (stack)– zawiera tymczasowe dane: parametry

wywołania funkcji, zmienne lokalne (automat.)

 Sekcja danych – zawiera zmienne glob. i statyczne

 Sterta (heap) – zawiera dane przydzielane

dynamicznie
Proces w pamięci operacyjnej

L.J. Opalski, slajdy do wykładu „Systemy Operacyjne I”

Adaptacja autorskich slajdów do podręcznika Silberschatz,

Galvin, Gagne , „Podstawy systemów operacyjnych”3

Stan procesu

 Wykonujący się proces zmienia swój stan

 nowy (new): proces został utworzony

 aktywny (running): są wykonywane instrukcje procesu

 oczekujący (waiting): proces czeka na wystąpienie
jakiegoś zdarzenia

 gotowy (ready): proces czeka na przydział procesora

 zakończony (terminated): proces zakończył działanie.

 Podstawowy (5-stanowy) diagram stanu procesów:

L.J. Opalski, slajdy do wykładu „Systemy Operacyjne I”

Adaptacja autorskich slajdów do podręcznika Silberschatz,

Galvin, Gagne , „Podstawy systemów operacyjnych”4

Stan procesu – c.d.

Szczegółowy diagram stanu dla systemu

z pamięcią wirtualną

Autor rysunku:

nieznany

Diagram stanów dla systemu

z pamięcią wirtualną

L.J. Opalski, slajdy do wykładu „Systemy Operacyjne I”

Adaptacja autorskich slajdów do podręcznika Silberschatz,

Galvin, Gagne , „Podstawy systemów operacyjnych”5

Blok kontrolny procesu (PCB)

Informacje zawarte w bloku kontrolnym procesu

(process control block - PCB):

 stan procesu

 licznik rozkazów

 rejestry procesora

 informacje o planowaniu przydziału procesora

 informacje o zarządzaniu pamięcią

 informacje do rozliczeń

 informacje o stanie wejścia/wyjścia

L.J. Opalski, slajdy do wykładu „Systemy Operacyjne I”

Adaptacja autorskich slajdów do podręcznika Silberschatz,

Galvin, Gagne , „Podstawy systemów operacyjnych”6

Przełączanie procesora pomiędzy

procesami
Przyczyny przerwania

wykonania procesu:

 przerwanie zegarowe

 przerwania od urządzeń

 wywołanie f. systemowej

 wystąpienie pułapki

W/w przerwania mogą być

okazją do przełączenia

procesora pomiędzy

procesami, ale decyzja

zależy od planisty

przydziału procesora.

L.J. Opalski, slajdy do wykładu „Systemy Operacyjne I”

Adaptacja autorskich slajdów do podręcznika Silberschatz,

Galvin, Gagne , „Podstawy systemów operacyjnych”7

Przełączanie kontekstu

 Kiedy procesor ma zmienić obsługiwany proces (przełączyć kontekst) -

system operacyjny musi przechować stan starego procesu i załadować

przechowywany stan nowego procesu.

 Czas przełączania jest narzutem (overhead) na rzecz systemu, gdyż w

czasie przełączania system nie wykonuje użytecznej pracy na rzecz

procesów użytkownika.

 Czas przełączania kontekstu zależy od typu maszyny, szybkości pamięci,

liczby rejestrów, istnienia specjalnych instrukcji zapamiętywania i

odtwarzania stanu (typowo 1 do 1000s).

L.J. Opalski, slajdy do wykładu „Systemy Operacyjne I”

Adaptacja autorskich slajdów do podręcznika Silberschatz,

Galvin, Gagne , „Podstawy systemów operacyjnych”8

Reprezentacja procesów w SO Linux

Struktura task_struct (<linux/include/linux/sched.h>) jest

alokowana dynamicznie w przestrzeni adresowej jądra

Wybrane pola:
volatile long state;/* -1 unrunnable, 0 runnable, >0 stopped */

void *stack;

pid_t pid, tgid;

struct task_struct__rcu *real_parent; /* real parent process */

struct list_head children; /* list of my children */

struct list_head sibling; /* linkage in my parent's children list */

struct task_struct *group_leader; /* threadgroup leader */

/* PID/PID hash table linkage. */

struct pid_link pids[PIDTYPE_MAX];

struct list_head thread_group, thread_node;

struct mm_struct *mm, *active_mm;

struct fs_struct *fs; /* filesystem information */

struct files_struct *files; /* open file information */

/* signal handlers */

struct signal_struct *signal;

struct sighand_struct *sighand;

sigset_t blocked, real_blocked, saved_sigmask;

struct sigpending pending;

struct list_head cpu_timers[3];

Stany procesu – zmienna state

(<linux/include/linux/sched.h>)
#define TASK_RUNNING 0

#define TASK_INTERRUPTIBLE 1

#define TASK_UNINTERRUPTIBLE 2

#define TASK_STOPPED 4

#define TASK_TRACED 8

/* in tsk->exit_state */

#define EXIT_DEAD 16

#define EXIT_ZOMBIE 32

#define EXIT_TRACE (EXIT_ZOMBIE|EXIT_DEAD)

/* in tsk->state again */

#define TASK_DEAD 64

#define TASK_WAITKILL 128

#define TASK_WAKING 256

#define TASK_PARKED 512

#define TASK_STATE_MAX 1024

L.J. Opalski, slajdy do wykładu „Systemy Operacyjne I”

Adaptacja autorskich slajdów do podręcznika Silberschatz,

Galvin, Gagne , „Podstawy systemów operacyjnych”9

Procesy

1. Koncepcja procesu

2. Planowanie procesów

3. Działania na procesach

4. Procesy współpracujące. Komunikacja i synchronizacja

międzyprocesowa

L.J. Opalski, slajdy do wykładu „Systemy Operacyjne I”

Adaptacja autorskich slajdów do podręcznika Silberschatz,

Galvin, Gagne , „Podstawy systemów operacyjnych”10

Kolejki planowania procesów

 Planista ma maksymalizować wykorzystanie CPU, efektywnie

przełączając procesor pomiędzy procesami gotowymi

 Planista zadań obsługuje różne kolejki systemowe

 Kolejka zadań (job queue) – zawiera wszystkie zadania w

systemie.

 Kolejka zadań gotowych (ready queue) – zawiera wszystkie

procesy gotowe do działania (w pamięci operacyjnej)

 Kolejki do urządzeń (device queues) – listy procesów

oczekujących na obsługę przez konkretne urządzenia

Procesy przemieszczają się pomiędzy kolejkami.

L.J. Opalski, slajdy do wykładu „Systemy Operacyjne I”

Adaptacja autorskich slajdów do podręcznika Silberschatz,

Galvin, Gagne , „Podstawy systemów operacyjnych”11

Kolejki procesów gotowych i do

urządzeń

L.J. Opalski, slajdy do wykładu „Systemy Operacyjne I”

Adaptacja autorskich slajdów do podręcznika Silberschatz,

Galvin, Gagne , „Podstawy systemów operacyjnych”12

Diagram kolejek w planowaniu

procesów

L.J. Opalski, slajdy do wykładu „Systemy Operacyjne I”

Adaptacja autorskich slajdów do podręcznika Silberschatz,

Galvin, Gagne , „Podstawy systemów operacyjnych”13

Planiści

 Procesy można dzielić na:

 ograniczone przez wejście wyjście - spędzające dużo więcej czasu na

wykonywanie operacji wejścia/wyjścia niż na obliczenia (wiele krótkich faz

procesora).

 ograniczone przez dostęp do procesora - sporadycznie generujące

zamówienia na operacje wejścia/wyjścia (nieliczne ale długie fazy procesora).

 Planista krótkoterminowy (planista przydziału procesora - short-term scheduler,

CPU scheduler)

 wybiera do wykonania jeden z procesów gotowych i przydziela mu procesor.

 podejmuje działanie bardzo często (n.p. co 100ms)  musi działać szybko.

 Planista długoterminowy (planista zadań - long-term scheduler, job scheduler)

 wybiera procesy do kolejki procesów gotowych

 wywoływany dosyć rzadko (co sekundy, minuty)  może działać powoli

 kontroluje stopień wieloprogramowości

 usiłuje realizować dobrą mieszankę procesów

 Nie wszystkie systemy operacyjne mają planistę długoterminowego

L.J. Opalski, slajdy do wykładu „Systemy Operacyjne I”

Adaptacja autorskich slajdów do podręcznika Silberschatz,

Galvin, Gagne , „Podstawy systemów operacyjnych”14

Uzupełnienie o planowanie

średnioterminowe

System operacyjny może wykorzystywać planistę średniookresowego,

który zabezpiecza system przed zbyt dużym stopniem

wieloprogramowości. Planista ten (w razie potrzeby) przesuwa proces

z pamięci na dysk, a w dogodnym czasie przywraca go z powrotem do

pamięci, by umożliwić kontynuację jego wykonania (swapping in/out)

L.J. Opalski, slajdy do wykładu „Systemy Operacyjne I”

Adaptacja autorskich slajdów do podręcznika Silberschatz,

Galvin, Gagne , „Podstawy systemów operacyjnych”15

Procesy

1. Koncepcja procesu

2. Planowanie procesów

3. Działania na procesach

4. Procesy współpracujące. Komunikacja i synchronizacja

międzyprocesowa

L.J. Opalski, slajdy do wykładu „Systemy Operacyjne I”

Adaptacja autorskich slajdów do podręcznika Silberschatz,

Galvin, Gagne , „Podstawy systemów operacyjnych”16

Operacje na procesach

System operacyjny musi obsługiwać:

Tworzenie procesów

Kończenie procesów

Komunikację i synchronizację procesów

L.J. Opalski, slajdy do wykładu „Systemy Operacyjne I”

Adaptacja autorskich slajdów do podręcznika Silberschatz,

Galvin, Gagne , „Podstawy systemów operacyjnych”17

Tworzenie procesu

 Procesy macierzyste (parent processes) tworzą procesy potomne
(children), które też tworzą podprocesy. W rezultacie powstaje drzewo
procesów.

 Dzielenie zasobów – warianty:

 Proces macierzysty i podprocesy współdzielą zasoby.

 Podprocesy współdzielą część zasobów procesu macierzystego.

 Proces macierzysty i podprocesy nie dzielą zasobów.

 Wykonywanie procesów – warianty:

 Proces macierzysty i podprocesy są wykonywane współbieżnie.

 Proces macierzysty czeka na zakończenie niektórych lub wszystkich
swoich procesów potomnych.

L.J. Opalski, slajdy do wykładu „Systemy Operacyjne I”

Adaptacja autorskich slajdów do podręcznika Silberschatz,

Galvin, Gagne , „Podstawy systemów operacyjnych”18

Tworzenie procesu (c.d.)

 Przestrzeń adresowa nowego procesu może być zagospodarowana

na 2 sposoby:

 Proces potomny staje się kopią procesu macierzystego.

 Proces potomny otrzymuje nowe zasoby (nowy program).

 W systemie UNIX

 funkcja systemowa fork() tworzy nowy proces

 funkcja systemowa execve() (użyta typowo po wywołaniu

funkcji fork()) zastępuje zawartość przestrzeni adresowej

procesu przez nowy program.

L.J. Opalski, slajdy do wykładu „Systemy Operacyjne I”

Adaptacja autorskich slajdów do podręcznika Silberschatz,

Galvin, Gagne , „Podstawy systemów operacyjnych”19

Tworzenie procesu – interfejs POSIX

#include <stdio.h>

#include <sys/types.h>

#include <unistd.h>

int main(){

pid_t pid1, pid2;

int status;

pid1 = fork(); /* fork a child process*/

if (pid1 < 0) { /* error occurred */

perror("Fork failed"); exit(1);

} else if (pid1 == 0) { /* child process */

execl("/bin/ls", "ls", " -l”,NULL); /* overwriting the child proces

memory with new program */

perror(”execlp”); exit(2);/* executed only if execl fails */

} else { /* parent process */

if((pid2=wait (&status))>0){/* waiting for the child proces to complete
*/

fprintf (stderr,„Potomek: PID=%d, status=%d,(int)pid2,status);

} else {

perror(”wait”); exit(3); /* wait() error */

}

return(0); /* alternaively: exit(0) */

}

}

L.J. Opalski, slajdy do wykładu „Systemy Operacyjne I”

Adaptacja autorskich slajdów do podręcznika Silberschatz,

Galvin, Gagne , „Podstawy systemów operacyjnych”20

Drzewo procesów systemu Linux

i ni t

pi d = 1

s s hd

pi d = 3028

l ogi n

pi d = 8415
kt hr e add

pi d = 2

s s hd

pi d = 3610
pdf l us h

pi d = 200

khe l pe r

pi d = 6

t c s c h

pi d = 4005
e mac s

pi d = 9204

bas h

pi d = 8416

ps

pi d = 9298

Uwaga: we współczesnych systemach zamiast procesu init z

pid=1 może występować proces systemd

L.J. Opalski, slajdy do wykładu „Systemy Operacyjne I”

Adaptacja autorskich slajdów do podręcznika Silberschatz,

Galvin, Gagne , „Podstawy systemów operacyjnych”21

Tworzenie procesu – interfejs Win32

#include <windows.h>

#include <stdio.h>

int main(VOID){

STARTUPINFO si;

PROCESS_INFORMATION pi;

ZeroMemory(&si, sizeof(si)); si.cb = sizeof(si);ZeroMemory(&pi, sizeof(pi));

// Start the child process.

if(!CreateProcess(NULL, // No module name (use command line).

"C:\\WINDOWS\\system32\\notepad.exe", // Command line.

NULL, // Process handle not inheritable.

NULL, // Thread handle not inheritable.

FALSE, // Set handle inheritance to FALSE.

0, // No creation flags.

NULL, // Use parent's environment block.

NULL, // Use parent's starting directory.

&si, // Pointer to STARTUPINFO structure.

&pi) // Pointer to PROCESS_INFORMATION structure.

) { fprintf(stderr, "CreateProcess failed (%d).\n", GetLastError()); return -1;

}

WaitForSingleObject(pi.hProcess, INFINITE); // Wait until child process exits.

CloseHandle(pi.hProcess); CloseHandle(pi.hThread); //Close process and thread handles

}

L.J. Opalski, slajdy do wykładu „Systemy Operacyjne I”

Adaptacja autorskich slajdów do podręcznika Silberschatz,

Galvin, Gagne , „Podstawy systemów operacyjnych”22

Wykonanie polecenia systemowego w

podprocesie – standardowa biblioteka C

#include <stdlib.h>

#include <stdio.h>

int main(void){

char buf[512];

if(fgets(buf, sizeof(buf), stdin)){/* wczytanie

polecenia do bufora */

int ret;

/* wykonanie polecenia w podprocesie interpretera

poleceń (powłoki) */

ret=system(buf);

if(ret) fprintf(stderr,”ret=%d\n”,ret);

return ret;

}

return 0;

}
L.J. Opalski, slajdy do wykładu „Systemy Operacyjne I”

Adaptacja autorskich slajdów do podręcznika Silberschatz,

Galvin, Gagne , „Podstawy systemów operacyjnych”23

Kończenie procesu

 Proces za pomocą wywołania funkcji systemowej (POSIX/C: exit()) prosi
system operacyjny, aby go usunął.

 Kod wyjścia podprocesu jest przekazywany do procesu macierzystego
(POSIX: za pomocą funkcji wait()). POSIX:

• zakończony proces potomny dla którego rodzic nie wykonał wait(),
to zombie

• Potomek, którego rodzic się zakończył, staje się sierotą (adoptowaną
przez proces init).

 Wszystkie zasoby procesu są odebrane przez system operacyjny.

 Proces macierzysty może spowodować zakończenie innego procesu
(zazwyczaj potomka) za pomocą funkcji systemowej (np. w Win32:
TerminateProcess()) z kilku powodów, n.p.

 proces potomny nadużył przydzielonego mu zasobu

 wykonywane przez potomka zadanie jest zbędne

W niektórych systemach, gdy proces macierzysty kończy się - system nie
pozwala potomkowi kontynuować działania (kaskada zakończeń:
potomkowie, potomkowie potomków itd.) .

L.J. Opalski, slajdy do wykładu „Systemy Operacyjne I”

Adaptacja autorskich slajdów do podręcznika Silberschatz,

Galvin, Gagne , „Podstawy systemów operacyjnych”24

Procesy

1. Koncepcja procesu

2. Planowanie procesów

3. Działania na procesach

4. Procesy współpracujące. Komunikacja i synchronizacja

międzyprocesowa

L.J. Opalski, slajdy do wykładu „Systemy Operacyjne I”

Adaptacja autorskich slajdów do podręcznika Silberschatz,

Galvin, Gagne , „Podstawy systemów operacyjnych”25

Procesy współpracujące

 Proces niezależny nie może oddziaływać na inne procesy, a te z kolei

nie mogą oddziaływać na jego działanie.

 Procesy współpracujące oddziałują wzajemnie na swoje wykonanie

(dzielą dane). System udostępnia takim procesom:

 możliwość współbieżnego wykonania

 usługi komunikacji (międzyprocesowej)

 usługi synchronizacji

 Zalety współpracy procesów

 dzielenie informacji (np. pomiędzy różnymi użytkownikami)

 przyspieszanie obliczeń (dla komputera o wielu procesorach czy

kanałach wejścia/wyjścia)

 modularność

 wygoda (z tytułu równoległego wykonywania kilku czynności)

L.J. Opalski, slajdy do wykładu „Systemy Operacyjne I”

Adaptacja autorskich slajdów do podręcznika Silberschatz,

Galvin, Gagne , „Podstawy systemów operacyjnych”26

Modele komunikacji międzyprocesowej

a) Przekazywanie komunikatów (message passing).

b) Pamięć współdzielona (shared memory). Poprawne współbieżne

wykorzystywanie operacji R/W wymaga synchronizacji (sekcja krytyczna)

L.J. Opalski, slajdy do wykładu „Systemy Operacyjne I”

