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Koncepcja procesu

® System operacyjny wykonuje réznorodne prace:
= system wsadowy - zadania (jobs) max

= system z podziatem czasu - programy uzytkownika stack
(user programs) lub zadania uzytkownika czy systemu
(tasks) l

® W podreczniku terminy zadanie i proces uzywane sg prawie
zamiennie.

" Proces — wykonujgcy sie program; wykonanie procesu musi T
by¢ sekwencyjne (jeden watek sterowania).

heap

® Sktadowe procesu (nie wytgczne):
= Kod (text section), licznik rozkazow i rejestry procesora data

= Stos (stack)— zawiera tymczasowe dane: parametry
wywotania funkcji, zmienne lokalne (automat.)

= Sekcja danych — zawiera zmienne glob. i statyczne

= Sterta (heap) — zawiera dane przydzielane Proces w pamieci operacyjnej
dynamicznie

text

0
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Stan procesu

® Wykonujgcy sie proces zmienia swoj stan
= nowy (new): proces zostat utworzony
= aktywny (running): sg wykonywane instrukcje procesu

= oczekujgcy (waiting): proces czeka na wystgpienie
jakiegos zdarzenia

= gotowy (ready): proces czeka na przydziat procesora
= zakonczony (terminated): proces zakonczyt dziatanie.

" Podstawowy (5-stanowy) diagram stanu procesow:

admitted interrupt

I/O or event completion I/O or event wait
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Stan procesu - c.d.

fork
Diagram stanow dla systemu l

z pamiecig wirtualng

not enough memory
{swapping system only)

system call,
interrupt

interrupt,
interrupt return

) swap out
7
Autor rysunku:
nieznany
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Blok kontrolny procesu (PCB)

Informacje zawarte w bloku kontrolnym procesu
(process control block - PCB):

® stan procesu

" licznik rozkazow

" rejestry procesora

" informacje o planowaniu przydziatu procesora
" informacje o zarzgdzaniu pamiecia

" informacje do rozliczen

" informacje o stanie wejscia/wyjscia

process

pointer stato

process number

program counter

registers

memory limits

list of open files
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Przetagczanie procesora pomiedzy
procesami

Przyczyny przerwania
wykonania procesu:

" przerwanie zegarowe

" przerwania od urzadzen
" wywotanie f. systemowe;
" wystgpienie putapki

W/w przerwania mogg by¢
okazjg do przetagczenia
procesora pomiedzy
procesami, ale decyzja
zalezy od planisty
przydziatu procesora.
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process P, operating system process P,

interrupt or system call

save state into PCB,

idle

reload state from PCB, )
interrupt or system call

! —~

save state into PCB,

> idle executing

idle

reload state from PCB,,

executing i¥
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Przetaczanie kontekstu

" Kiedy procesor ma zmienic obstugiwany proces (przetgczy¢ kontekst) -
system operacyjny musi przechowac stan starego procesu i zatadowac
przechowywany stan nowego procesu.

® Czas przetgczania jest narzutem (overhead) na rzecz systemu, gdyz w
czasie przetgczania system nie wykonuje uzytecznej pracy na rzecz
procesow uzytkownika.

® Czas przetgczania kontekstu zalezy od typu maszyny, szybkosci pamieci,
liczby rejestrow, istnienia specjalnych instrukcji zapamietywania i
odtwarzania stanu (typowo 1 do 1000us).
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Reprezentacja procesow w SO Linux

Struktura task_struct (<linux/include/linux/sched.h>) jest

alokowana dynamicznie w przestrzeni adresowej jgdra Stany procesu — zmienna state

(<linux/include/linux/sched.h>)

#define TASK_RUNNING 0
Wybrane pola: #define TASK_INTERRUPTIBLE 1
- . > % #define TASK_UNINTERRUPTIBLE 2
vo!gtfetlorilg state;/* -1 unrunnable, 0 runnable, >0 stopped */ sdefine TASK STOPPED 4
voia “stack; - #define TASK_TRACED 8
pid_t pid, tgid; [* in tsk->exit_state */
struct task_struct__rcu *real_parent; /* real parent process */ #define EXIT_DEAD 16
struct list_head children; /* list of my children */ #define EXIT_ZOMBIE 32
struct list_head sibling; /* linkage in my parent's children list */ ﬁd_e‘c'”e EXIT_TRACE fEx'T—ZOMB'EEX'T—DEAD)
truct task_struct *group_leader; /* threadgroup leader */ f! in tsk>state again /
S — group_ ) group #define TASK_DEAD 64
/* PID/PID hash table linkage. */ #define TASK_WAITKILL 128
struct pid_link pids[PIDTYPE_MAX]; #define TASK_WAKING 256
struct list_head thread_group, thread_node; #define TASK_PARKED 512

#define TASK_STATE_MAX 1024

struct mm_struct *mm, *active_mm;

struct fs_struct *fs; /* filesystem information */

struct files_struct *files; /* open file information */
[* signal handlers */

struct signal_struct *signal,; © e % N
struct sighand_struct *sighand; [
sigset_t blocked, real_blocked, saved_sigmask; struct task_struct struct task_struct struct task_struct
structgigpending penaing' - process information process information PR process information
struct list_head cpu_timers|[3]; : . é
L] < L
x_“ 1 L WV & P 4
current
o _ (currently executing proccess)
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Kolejki planowania procesow

" Planista ma maksymalizowa¢ wykorzystanie CPU, efektywnie
przetaczajgc procesor pomiedzy procesami gotowymi

® Planista zadan obstuguje r6zne kolejki systemowe

= Kolejka zadan (job queue) — zawiera wszystkie zadania w
systemie.

= Kolejka zadan gotowych (ready queue) — zawiera wszystkie
procesy gotowe do dziatania (w pamieci operacyjnej)

» Kolejki do urzagdzen (device queues) — listy procesow
oczekujgcych na obstuge przez konkretne urzgdzenia

Procesy przemieszczajg sie pomiedzy kolejkami.
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Kolejki procesow gotowych i do
urzadzen

queue header PCB, PCB,
ready head >
queue tail registers registers
g head Y
tape - =
unit 0 tail ==
ggg head +—a
: PCB PCB
unit 1 tail T 2 J
e
disk head
unit 0 tail \
PCB,
terminal head — S,
unit 0 tail ¥
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Diagram kolejek w planowaniu
procesow

::l ready queue CPU >

I/O queue |‘7 I/0O request |‘7
. SSS——
time 'sluce <
expired
= SR
child fork a
executes / child r
interrupt wait for an
occurs /- interrupt
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Planisci

" Procesy mozna dzieli¢ na:
" ograniczone przez wejscie wyjscie - spedzajgce duzo wiecej czasu na

wykonywanie operacji wejscia/wyjscia niz na obliczenia (wiele krotkich faz
procesora).

= ograniczone przez dostep do procesora - sporadycznie generujgce

zamoOwienia na operacje wejscia/wyjscia (nieliczne ale dtugie fazy procesora).

" Planista krétkoterminowy (planista przydziatu procesora - short-term scheduler,
CPU scheduler)

wybiera do wykonania jeden z procesow gotowych i przydziela mu procesor.
podejmuje dziatanie bardzo czesto (n.p. co 100ms) = musi dziata¢ szybko.

" Planista dtugoterminowy (planista zadan - long-term scheduler, job scheduler)

wybiera procesy do kolejki proceséw gotowych

wywotywany dosy¢ rzadko (co sekundy, minuty) = moze dziata¢ powoli
kontroluje stopien wieloprogramowosci

usituje realizowa¢ dobrg mieszanke procesow

Nie wszystkie systemy operacyjne majg planiste dtugoterminowego
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Uzupetnienie o planowanie
srednioterminowe

System operacyjny moze wykorzystywac planiste sredniookresowego,
ktory  zabezpiecza  system  przed zbyt duzym @ stopniem
wieloprogramowosci. Planista ten (w razie potrzeby) przesuwa proces
z pamieci na dysk, a w dogodnym czasie przywraca go z powrotem do
pamieci, by umozliwi¢ kontynuacje jego wykonania (swapping in/out)

e
swap in partially executed swap out
swapped-out processes

ready queue CPU » end
- - ==
I/0 waitin
O waiting .
queues
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Operacje na procesach

System operacyjny musi obstugiwac:
" Tworzenie procesow

® Konczenie procesow

® Komunikacje | synchronizacje procesow
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worzenie procesu

" Procesy macierzyste (parent processes) tworzg procesy potomne
(children), ktore tez tworzg podprocesy. W rezultacie powstaje drzewo
procesow.

" Dzielenie zasobow — warianty:
* Proces macierzysty i podprocesy wspotdzielg zasoby.
= Podprocesy wspotdzielg czesS¢ zasobdw procesu macierzystego.
» Proces macierzysty i podprocesy nie dzielg zasobow.

" Wykonywanie procesow — warianty:
= Proces macierzysty i podprocesy sg wykonywane wspotbieznie.
= Proces macierzysty czeka na zakonczenie niektorych lub wszystkich
swoich procesow potomnych.
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worzenie procesu (c.d.)

" Przestrzen adresowa nowego procesu moze bycC zagospodarowana

na 2 sposoby:

= Proces potomny staje sie kopig procesu macierzystego.
= Proces potomny otrzymuje nowe zasoby (nowy program).

" W systemie UNIX

= funkcja systemowa fork () tworzy nowy proces

= funkcja systemowa execve () (uzyta typowo po wywotaniu
funkcji fork () ) zastepuje zawartosc przestrzeni adresowej

procesu przez nowy program.

parent

~o—@E
child \_ )

- - /’
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Tworzenie procesu — interfejs POSIX

#include <stdio.h>
#include <sys/types.h>
#include <unistd.h>
int main () {
pid t pidl, pid2;
int status;
pidl = fork(); /* fork a child process*/

if (pidl < 0) { /* error occurred */

perror ("Fork failed"); exit(1l);
} else if (pidl == 0) { /* child process */
execl ("/bin/1s", "1ls", " -1”,NULL); /* overwriting the child proces

memory with new program */
perror ("execlp”); exit(2);/* executed only if execl fails */
} else { /* parent process */

if ((pid2=wait (&status))>0){/* waiting for the child proces to complete

*/
fprintf (stderr, ,Potomek: PID=%d, status=%d, (int)pid2,status);
} else {
perror ("wait”); exit(3); /* wait() error */

}
return (0); /* alternaively: exit (0) */

}

}
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Drzewo procesow systemu Linux

. login kt hreadd ' sshd
pid = 8415 pid =2 pid = 3028
bash khel per pdf l ush _ sshd
pid = 8416 pid =6 pid = 200 pid = 3610

tcsch

enmacs
ps pid = 4005

pid = 9298 pid = 9204

Uwaga: we wspotczesnych systemach zamiast procesu init z
pid=1 moze wystepowac proces systemd
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Tworzenie procesu - interfejs Win32

#include <windows.h>
#include <stdio.h>
int main( VOID ) {
STARTUPINFO si;
PROCESS INFORMATION pi;
ZeroMemory ( &si, sizeof(si) ); si.cb = sizeof(si);ZeroMemory( &pi, sizeof (pi) );
// Start the child process.
if ( !CreateProcess( NULL, // No module name (use command line).

"C:\\WINDOWS\\system32\\notepad.exe", // Command line.

NULL, // Process handle not inheritable.
NULL, // Thread handle not inheritable.
FALSE, // Set handle inheritance to FALSE.
0, // No creation flags.
NULL, // Use parent's environment block.
NULL, // Use parent's starting directory.
&si, // Pointer to STARTUPINFO structure.
&pi ) // Pointer to PROCESS INFORMATION structure.
) | fprintf (stderr, "CreateProcess failed (%d).\n", GetLastError() ); return -1;

WaitForSingleObject ( pi.hProcess, INFINITE ); // Wait until child process exits.
CloseHandle ( pi.hProcess ); CloseHandle( pi.hThread ); //Close process and thread handles
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Wykonanie polecenia systemowego w
podprocesie — standardowa biblioteka C

#include <stdlib.h>

#include <stdio.h>

int main( void) {
char buf[512];

if (fgets (buf, sizeof (buf), stdin)) {/* wczytanie
polecenia do bufora */

int ret;

/* wykonanie polecenia w podprocesie interpretera
polecen (powioki) */

ret=system (buf) ;
if (ret) fprintf (stderr,”ret=%d\n”, ret);
return ret;

}

return 0O;

}
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Konczenie procesu

" Proces za pomocg wywotania funkcji systemowej (POSIX/C: exit ()) prosi
system operacyjny, aby go usunat.

= Kod wyjscia podprocesu jest przekazywany do procesu macierzystego
(POSIX: za pomoca funkcji wait () ). POSIX:

- zakonczony proces potomny dla ktérego rodzic nie wykonat wait () ,
to zombie

- Potomek, ktorego rodzic sie zakonczyt, staje sie sierotg (adoptowang
przez proces init).

= Wszystkie zasoby procesu sg odebrane przez system operacyjny.

" Proces macierzysty moze spowodowac zakonczenie innego procesu
(zazwyczaj potomka) za pomocg funkcji systemowej (np. w Win32:
TerminateProcess () ) z kilku powodow, n.p.

= proces potomny naduzyt przydzielonego mu zasobu
= wykonywane przez potomka zadanie jest zbedne

W niektorych systemach, gdy proces macierzysty konczy sie - system nie
pozwala potomkowi kontynuowa¢ dziatania (kaskada zakonczen:.
potomkowie, potomkowie potomkow itd.) .
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Procesy wspoipracujace

" Proces niezalezny nie moze oddziatywac¢ na inne procesy, a te z kolei
nie mogg oddziatywac na jego dziatanie.

" Procesy wspotpracujace oddziatujg wzajemnie na swoje wykonanie
(dzielg dane). System udostepnia takim procesom:

= mozliwos¢ wspotbieznego wykonania
= ustugi komunikacji (miedzyprocesowej)
= ustugi synchronizacji

" Zalety wspotpracy procesow
= dzielenie informacji (np. pomiedzy réznymi uzytkownikami)
= przyspieszanie obliczen (dla komputera o wielu procesorach czy
kanatach wejscia/wyjscia)
= modularnosc

= wygoda (z tytutu rownolegtego wykonywania kilku czynnosci)
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Modele komunikacji miedzyprocesowej

|

process A L process A

orocess B shared memory
process B

message queue
—> Mo (M4 | Mo Mg ... My,
kernel
kernel
(a) (b)

a) Przekazywanie komunikatow (message passing).

b) Pamiec¢ wspodtdzielona (shared memory). Poprawne wspotbiezne
wykorzystywanie operacji R/W wymaga synchronizacji (sekcja krytyczna)
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