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Koncepcja procesu

 System operacyjny wykonuje różnorodne prace:

 system wsadowy - zadania (jobs)

 system z podziałem czasu - programy użytkownika 

(user programs) lub zadania użytkownika czy systemu 

(tasks)

 W podręczniku terminy zadanie i proces używane są prawie 

zamiennie. 

 Proces – wykonujący się program; wykonanie procesu musi 

być sekwencyjne (jeden wątek sterowania).

 Składowe procesu (nie wyłączne): 

 Kod (text section), licznik rozkazów i rejestry procesora

 Stos (stack)– zawiera tymczasowe dane: parametry 

wywołania funkcji, zmienne lokalne (automat.)

 Sekcja danych – zawiera zmienne glob. i statyczne

 Sterta (heap) – zawiera dane przydzielane 

dynamicznie
Proces w pamięci operacyjnej
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Stan procesu

 Wykonujący się proces zmienia swój stan

 nowy (new):  proces został utworzony

 aktywny (running):  są wykonywane instrukcje procesu

 oczekujący (waiting):  proces czeka na wystąpienie 
jakiegoś zdarzenia

 gotowy (ready):  proces czeka na przydział procesora

 zakończony (terminated):  proces zakończył działanie.

 Podstawowy (5-stanowy) diagram stanu procesów:
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Stan procesu – c.d.

Szczegółowy diagram stanu dla systemu 

z pamięcią wirtualną

Autor rysunku: 

nieznany

Diagram stanów dla systemu 

z pamięcią wirtualną
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Blok kontrolny procesu (PCB)

Informacje zawarte w bloku kontrolnym procesu

(process control block - PCB):

 stan procesu

 licznik rozkazów

 rejestry procesora

 informacje o planowaniu przydziału procesora

 informacje o zarządzaniu pamięcią

 informacje do rozliczeń

 informacje o stanie wejścia/wyjścia

L.J. Opalski, slajdy do wykładu „Systemy Operacyjne I” 
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Przełączanie procesora pomiędzy 

procesami
Przyczyny przerwania 

wykonania procesu:

 przerwanie zegarowe

 przerwania od urządzeń

 wywołanie f. systemowej

 wystąpienie pułapki

W/w  przerwania mogą być 

okazją do przełączenia 

procesora pomiędzy 

procesami, ale decyzja 

zależy od planisty 

przydziału procesora.
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Przełączanie kontekstu

 Kiedy procesor ma zmienić obsługiwany proces (przełączyć kontekst) -

system operacyjny musi przechować stan starego procesu i załadować 

przechowywany stan nowego procesu.

 Czas przełączania jest narzutem (overhead) na rzecz systemu, gdyż w 

czasie przełączania system nie wykonuje użytecznej pracy na rzecz 

procesów użytkownika.

 Czas przełączania kontekstu zależy od typu maszyny, szybkości pamięci, 

liczby rejestrów, istnienia specjalnych instrukcji zapamiętywania i 

odtwarzania stanu (typowo 1 do 1000s).

L.J. Opalski, slajdy do wykładu „Systemy Operacyjne I” 
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Reprezentacja procesów w SO Linux

Struktura task_struct (<linux/include/linux/sched.h>) jest 

alokowana dynamicznie w przestrzeni adresowej jądra

Wybrane pola:
volatile long state;/* -1 unrunnable, 0 runnable, >0 stopped */

void *stack;

pid_t pid, tgid;

struct task_struct__rcu *real_parent; /* real parent process */

struct list_head children; /* list of my children */

struct list_head sibling; /* linkage in my parent's children list */

struct task_struct *group_leader; /* threadgroup leader */

/* PID/PID hash table linkage. */

struct pid_link pids[PIDTYPE_MAX];

struct list_head thread_group, thread_node;

struct mm_struct *mm, *active_mm;

struct fs_struct *fs; /* filesystem information */

struct files_struct *files; /* open file information */

/* signal handlers */

struct signal_struct *signal; 

struct sighand_struct *sighand; 

sigset_t blocked, real_blocked, saved_sigmask; 

struct sigpending pending;

struct list_head cpu_timers[3];

Stany procesu – zmienna state

(<linux/include/linux/sched.h>)
#define TASK_RUNNING 0 

#define TASK_INTERRUPTIBLE      1

#define TASK_UNINTERRUPTIBLE 2

#define  TASK_STOPPED 4

#define  TASK_TRACED 8 

/* in tsk->exit_state */

#define EXIT_DEAD 16 

#define EXIT_ZOMBIE 32 

#define EXIT_TRACE (EXIT_ZOMBIE|EXIT_DEAD)

/* in tsk->state again */

#define TASK_DEAD 64 

#define TASK_WAITKILL 128 

#define TASK_WAKING 256 

#define  TASK_PARKED 512 

#define TASK_STATE_MAX 1024

L.J. Opalski, slajdy do wykładu „Systemy Operacyjne I” 
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Kolejki planowania procesów

 Planista ma maksymalizować wykorzystanie CPU, efektywnie 

przełączając procesor pomiędzy procesami gotowymi

 Planista zadań obsługuje różne kolejki systemowe

 Kolejka zadań (job queue) – zawiera wszystkie zadania w 

systemie.

 Kolejka zadań gotowych (ready queue) – zawiera wszystkie 

procesy gotowe do działania (w pamięci operacyjnej)

 Kolejki do urządzeń (device queues) – listy procesów 

oczekujących na obsługę przez konkretne urządzenia

Procesy przemieszczają się pomiędzy kolejkami.

L.J. Opalski, slajdy do wykładu „Systemy Operacyjne I” 
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Kolejki procesów gotowych i do 

urządzeń

L.J. Opalski, slajdy do wykładu „Systemy Operacyjne I” 
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Diagram kolejek w planowaniu 

procesów

L.J. Opalski, slajdy do wykładu „Systemy Operacyjne I” 
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Planiści

 Procesy można dzielić na:

 ograniczone przez wejście wyjście - spędzające dużo więcej czasu na 

wykonywanie operacji wejścia/wyjścia niż na obliczenia (wiele krótkich faz 

procesora).

 ograniczone przez dostęp do procesora - sporadycznie generujące 

zamówienia na operacje wejścia/wyjścia (nieliczne ale długie fazy procesora).

 Planista krótkoterminowy (planista przydziału procesora - short-term scheduler, 

CPU scheduler)

 wybiera do wykonania jeden z procesów gotowych i przydziela mu procesor.

 podejmuje działanie bardzo często (n.p. co 100ms)  musi działać szybko.

 Planista długoterminowy (planista zadań - long-term scheduler, job scheduler)

 wybiera procesy do kolejki procesów gotowych

 wywoływany dosyć rzadko (co sekundy, minuty)  może działać powoli

 kontroluje stopień wieloprogramowości

 usiłuje realizować dobrą mieszankę procesów

 Nie wszystkie systemy operacyjne mają planistę długoterminowego

L.J. Opalski, slajdy do wykładu „Systemy Operacyjne I” 
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Uzupełnienie o planowanie 

średnioterminowe

System operacyjny może wykorzystywać planistę średniookresowego,

który zabezpiecza system przed zbyt dużym stopniem

wieloprogramowości. Planista ten (w razie potrzeby) przesuwa proces

z pamięci na dysk, a w dogodnym czasie przywraca go z powrotem do

pamięci, by umożliwić kontynuację jego wykonania (swapping in/out)

L.J. Opalski, slajdy do wykładu „Systemy Operacyjne I” 
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Operacje na procesach

System operacyjny musi obsługiwać:

Tworzenie procesów

Kończenie procesów

Komunikację i synchronizację procesów

L.J. Opalski, slajdy do wykładu „Systemy Operacyjne I” 
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Tworzenie procesu

 Procesy macierzyste (parent processes) tworzą procesy potomne
(children), które też tworzą podprocesy. W rezultacie powstaje drzewo 
procesów.

 Dzielenie zasobów – warianty:

 Proces macierzysty i podprocesy współdzielą zasoby.

 Podprocesy współdzielą część zasobów procesu macierzystego.

 Proces macierzysty i podprocesy nie dzielą zasobów.

 Wykonywanie procesów – warianty:

 Proces macierzysty i podprocesy są wykonywane współbieżnie.

 Proces macierzysty czeka na zakończenie niektórych lub wszystkich 
swoich procesów potomnych.

L.J. Opalski, slajdy do wykładu „Systemy Operacyjne I” 
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Tworzenie procesu (c.d.)

 Przestrzeń adresowa nowego procesu może być zagospodarowana 

na 2 sposoby: 

 Proces potomny staje się kopią procesu macierzystego.

 Proces potomny otrzymuje nowe zasoby (nowy program).

 W systemie UNIX

 funkcja systemowa fork() tworzy nowy proces

 funkcja systemowa execve() (użyta typowo po wywołaniu 

funkcji fork()) zastępuje zawartość przestrzeni adresowej 

procesu przez nowy program.

L.J. Opalski, slajdy do wykładu „Systemy Operacyjne I” 
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Tworzenie procesu – interfejs POSIX

#include <stdio.h>

#include <sys/types.h>

#include <unistd.h>

int main(){

pid_t pid1, pid2;

int status;

pid1 = fork(); /* fork a child process*/

if (pid1 < 0) { /* error occurred */

perror("Fork failed"); exit(1);

} else if (pid1 == 0) { /* child process */

execl("/bin/ls", "ls", " -l”,NULL); /* overwriting the child proces 

memory with new program */

perror(”execlp”);  exit(2);/* executed only if execl fails */

} else { /* parent process */

if((pid2=wait (&status))>0){/* waiting for the child proces to complete
*/

fprintf (stderr,„Potomek: PID=%d, status=%d,(int)pid2,status);

} else {

perror(”wait”);  exit(3); /* wait() error */

}

return(0); /* alternaively: exit(0) */

}

}

L.J. Opalski, slajdy do wykładu „Systemy Operacyjne I” 
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Drzewo procesów systemu Linux

i ni t

pi d = 1

s s hd

pi d = 3028

l ogi n

pi d = 8415
kt hr e add

pi d = 2

s s hd

pi d = 3610
pdf l us h

pi d = 200

khe l pe r

pi d = 6

t c s c h

pi d = 4005
e mac s

pi d = 9204

bas h

pi d = 8416

ps

pi d = 9298

Uwaga: we współczesnych systemach zamiast procesu init z 

pid=1 może występować proces systemd
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Tworzenie procesu – interfejs Win32

#include <windows.h>

#include <stdio.h>

int main( VOID ){

STARTUPINFO si;

PROCESS_INFORMATION pi;

ZeroMemory( &si, sizeof(si) ); si.cb = sizeof(si);ZeroMemory( &pi, sizeof(pi) );

//  Start the child process.

if( !CreateProcess( NULL,   // No module name (use command line).

"C:\\WINDOWS\\system32\\notepad.exe", // Command line.

NULL,             // Process handle not inheritable.

NULL,             // Thread handle not inheritable.

FALSE,            // Set handle inheritance to FALSE.

0,                // No creation flags.

NULL,             // Use parent's environment block.

NULL,             // Use parent's starting directory.

&si,              // Pointer to STARTUPINFO structure.

&pi )             // Pointer to PROCESS_INFORMATION structure.

) {        fprintf(stderr, "CreateProcess failed (%d).\n", GetLastError() ); return -1;    

}

WaitForSingleObject( pi.hProcess, INFINITE ); // Wait until child process exits.

CloseHandle( pi.hProcess ); CloseHandle( pi.hThread ); //Close process and thread handles

}

L.J. Opalski, slajdy do wykładu „Systemy Operacyjne I” 
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Wykonanie polecenia systemowego w 

podprocesie – standardowa biblioteka C

#include <stdlib.h>

#include <stdio.h>

int main( void){

char buf[512];

if(fgets(buf, sizeof(buf), stdin)){/* wczytanie 

polecenia do bufora */

int ret;

/* wykonanie polecenia w podprocesie interpretera 

poleceń (powłoki) */

ret=system(buf); 

if(ret) fprintf(stderr,”ret=%d\n”,ret);

return ret;

}

return 0;

}
L.J. Opalski, slajdy do wykładu „Systemy Operacyjne I” 
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Kończenie procesu

 Proces za pomocą wywołania funkcji systemowej (POSIX/C: exit()) prosi 
system operacyjny, aby go usunął.

 Kod wyjścia podprocesu jest przekazywany do procesu macierzystego 
(POSIX: za pomocą funkcji wait()). POSIX:

• zakończony proces potomny dla którego rodzic nie wykonał wait(), 
to zombie

• Potomek, którego rodzic się zakończył, staje się sierotą (adoptowaną 
przez proces init ).

 Wszystkie zasoby procesu są odebrane przez system operacyjny.

 Proces macierzysty może spowodować zakończenie innego procesu 
(zazwyczaj potomka) za pomocą funkcji systemowej (np. w Win32: 
TerminateProcess()) z kilku powodów, n.p.

 proces potomny nadużył przydzielonego mu zasobu

 wykonywane przez potomka zadanie jest zbędne

W niektórych systemach, gdy proces macierzysty kończy się - system nie 
pozwala potomkowi kontynuować działania (kaskada zakończeń: 
potomkowie, potomkowie potomków itd.) .

L.J. Opalski, slajdy do wykładu „Systemy Operacyjne I” 



Adaptacja autorskich slajdów do podręcznika Silberschatz, 

Galvin, Gagne , „Podstawy systemów operacyjnych”24

Procesy

1. Koncepcja procesu

2. Planowanie procesów

3. Działania  na procesach

4. Procesy współpracujące. Komunikacja i synchronizacja 

międzyprocesowa

L.J. Opalski, slajdy do wykładu „Systemy Operacyjne I” 



Adaptacja autorskich slajdów do podręcznika Silberschatz, 

Galvin, Gagne , „Podstawy systemów operacyjnych”25

Procesy współpracujące

 Proces niezależny nie może oddziaływać na inne procesy, a te z kolei 

nie mogą oddziaływać na jego działanie.

 Procesy współpracujące oddziałują wzajemnie na swoje wykonanie 

(dzielą dane). System udostępnia takim procesom:

 możliwość współbieżnego wykonania

 usługi komunikacji (międzyprocesowej)

 usługi synchronizacji

 Zalety współpracy procesów

 dzielenie informacji (np. pomiędzy różnymi użytkownikami)

 przyspieszanie obliczeń (dla komputera o wielu procesorach czy 

kanałach wejścia/wyjścia)

 modularność

 wygoda (z tytułu równoległego wykonywania kilku czynności)

L.J. Opalski, slajdy do wykładu „Systemy Operacyjne I” 
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Modele komunikacji międzyprocesowej

a) Przekazywanie komunikatów (message passing).

b) Pamięć współdzielona (shared memory). Poprawne współbieżne 

wykorzystywanie operacji R/W wymaga synchronizacji (sekcja krytyczna)
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