Procesy

. Koncepcja procesu
. Planowanie procesow

. Dziatania na procesach

> W N

. Procesy wspotpracujgce. Komunikacja i synchronizacja
miedzyprocesowa

Data ostatniej modyfikacji: 09.10.2016

L.J. Opalski, slajdy do wyktadu ,Systemy Operacyjne I” Adaptacja autorskich slajdéw do podrecznika Silberschatz,
1 Galvin, Gagne , ,Podstawy systeméw operacyjnych”

Koncepcja procesu

® System operacyjny wykonuje réznorodne prace:
= system wsadowy - zadania (jobs) max

= system z podziatem czasu - programy uzytkownika stack
(user programs) lub zadania uzytkownika czy systemu
(tasks) l

® W podreczniku terminy zadanie i proces uzywane sg prawie
zamiennie.

" Proces — wykonujgcy sie program; wykonanie procesu musi T
by¢ sekwencyjne (jeden watek sterowania).

heap

® Sktadowe procesu (nie wytgczne):
= Kod (text section), licznik rozkazow i rejestry procesora data

= Stos (stack)— zawiera tymczasowe dane: parametry
wywotania funkcji, zmienne lokalne (automat.)

= Sekcja danych — zawiera zmienne glob. i statyczne

= Sterta (heap) — zawiera dane przydzielane Proces w pamieci operacyjnej
dynamicznie

text

0

L.J. Opalski, slajdy do wyktadu ,Systemy Operacyjne I” Adaptacja autorskich slajdéw do podrecznika Silberschatz,
2 Galvin, Gagne , ,Podstawy systeméw operacyjnych”

Stan procesu

® Wykonujgcy sie proces zmienia swoj stan
= nowy (new): proces zostat utworzony
= aktywny (running): sg wykonywane instrukcje procesu

= oczekujgcy (waiting): proces czeka na wystgpienie
jakiegos zdarzenia

= gotowy (ready): proces czeka na przydziat procesora
= zakonczony (terminated): proces zakonczyt dziatanie.

" Podstawowy (5-stanowy) diagram stanu procesow:

admitted interrupt

I/O or event completion I/O or event wait

L.J. Opalski, slajdy do wyktadu ,Systemy Operacyjne I” Adaptacja autorskich slajdéw do podrecznika Silberschatz,
3 Galvin, Gagne , ,Podstawy systeméw operacyjnych”

Stan procesu - c.d.

fork
Diagram stanow dla systemu l

z pamiecig wirtualng

not enough memory
{swapping system only)

system call,
interrupt

interrupt,
interrupt return

) swap out
7
Autor rysunku:
nieznany
L.J. Opalski, slajdy do wyktadu ,Systemy Operacyjne I” Adaptacja autorskich slajdow do podrecznika Silberschatz,

4 Galvin, Gagne , ,Podstawy systeméw operacyjnych”

Blok kontrolny procesu (PCB)

Informacje zawarte w bloku kontrolnym procesu
(process control block - PCB):

® stan procesu

" licznik rozkazow

" rejestry procesora

" informacje o planowaniu przydziatu procesora
" informacje o zarzgdzaniu pamiecia

" informacje do rozliczen

" informacje o stanie wejscia/wyjscia

process

pointer stato

process number

program counter

registers

memory limits

list of open files

L.J. Opalski, slajdy do wyktadu ,Systemy Operacyjne I” Adaptacja autorskich slajdéw do podrecznika Silberschatz,
S Galvin, Gagne , ,Podstawy systeméw operacyjnych”

Przetagczanie procesora pomiedzy
procesami

Przyczyny przerwania
wykonania procesu:

" przerwanie zegarowe

" przerwania od urzadzen
" wywotanie f. systemowe;
" wystgpienie putapki

W/w przerwania mogg by¢
okazjg do przetagczenia
procesora pomiedzy
procesami, ale decyzja
zalezy od planisty
przydziatu procesora.

L.J. Opalski, slajdy do wyktadu ,Systemy Operacyjne I”

process P, operating system process P,

interrupt or system call

save state into PCB,

idle

reload state from PCB,)
interrupt or system call

! —~

save state into PCB,

> idle executing

idle

reload state from PCB,,

executing i¥

Adaptacja autorskich slajdéw do podrecznika Silberschatz,
Galvin, Gagne , ,Podstawy systeméw operacyjnych”

Przetaczanie kontekstu

" Kiedy procesor ma zmienic obstugiwany proces (przetgczy¢ kontekst) -
system operacyjny musi przechowac stan starego procesu i zatadowac
przechowywany stan nowego procesu.

® Czas przetgczania jest narzutem (overhead) na rzecz systemu, gdyz w
czasie przetgczania system nie wykonuje uzytecznej pracy na rzecz
procesow uzytkownika.

® Czas przetgczania kontekstu zalezy od typu maszyny, szybkosci pamieci,
liczby rejestrow, istnienia specjalnych instrukcji zapamietywania i
odtwarzania stanu (typowo 1 do 1000us).

L.J. Opalski, slajdy do wyktadu ,Systemy Operacyjne I” Adaptacja autorskich slajdéw do podrecznika Silberschatz,
7 Galvin, Gagne , ,Podstawy systeméw operacyjnych”

Reprezentacja procesow w SO Linux

Struktura task_struct (<linux/include/linux/sched.h>) jest

alokowana dynamicznie w przestrzeni adresowej jgdra Stany procesu — zmienna state

(<linux/include/linux/sched.h>)

#define TASK_RUNNING 0
Wybrane pola: #define TASK_INTERRUPTIBLE 1
- . > % #define TASK_UNINTERRUPTIBLE 2
vo!gtfetlorilg state;/* -1 unrunnable, 0 runnable, >0 stopped */ sdefine TASK STOPPED 4
voia “stack; - #define TASK_TRACED 8
pid_t pid, tgid; [* in tsk->exit_state */
struct task_struct__rcu *real_parent; /* real parent process */ #define EXIT_DEAD 16
struct list_head children; /* list of my children */ #define EXIT_ZOMBIE 32
struct list_head sibling; /* linkage in my parent's children list */ ﬁd_e‘c'”e EXIT_TRACE fEx'T—ZOMB'EEX'T—DEAD)
truct task_struct *group_leader; /* threadgroup leader */ f! in tsk>state again /
S — group_) group #define TASK_DEAD 64
/* PID/PID hash table linkage. */ #define TASK_WAITKILL 128
struct pid_link pids[PIDTYPE_MAX]; #define TASK_WAKING 256
struct list_head thread_group, thread_node; #define TASK_PARKED 512

#define TASK_STATE_MAX 1024

struct mm_struct *mm, *active_mm;

struct fs_struct *fs; /* filesystem information */

struct files_struct *files; /* open file information */
[* signal handlers */

struct signal_struct *signal,; © e % N
struct sighand_struct *sighand; [
sigset_t blocked, real_blocked, saved_sigmask; struct task_struct struct task_struct struct task_struct
structgigpending penaing' - process information process information PR process information
struct list_head cpu_timers|[3]; : . é
L] < L
x_“ 1 L WV & P 4
current
o _ (currently executing proccess)
L.J. Opalski, slajdy do wyktadu ,Systemy Operacyjne I” Adaptacja autorskich slajdow do podrecznika Silberschatz,

8 Galvin, Gagne , ,Podstawy systeméw operacyjnych”

Procesy

. Koncepcja procesu
. Planowanie proceséw

. Dziatania na procesach

> W N

. Procesy wspotpracujgce. Komunikacja i synchronizacja
miedzyprocesowa

L.J. Opalski, slajdy do wyktadu ,Systemy Operacyjne I” Adaptacja autorskich slajdéw do podrecznika Silberschatz,
9 Galvin, Gagne , ,Podstawy systeméw operacyjnych”

Kolejki planowania procesow

" Planista ma maksymalizowa¢ wykorzystanie CPU, efektywnie
przetaczajgc procesor pomiedzy procesami gotowymi

® Planista zadan obstuguje r6zne kolejki systemowe

= Kolejka zadan (job queue) — zawiera wszystkie zadania w
systemie.

= Kolejka zadan gotowych (ready queue) — zawiera wszystkie
procesy gotowe do dziatania (w pamieci operacyjnej)

» Kolejki do urzagdzen (device queues) — listy procesow
oczekujgcych na obstuge przez konkretne urzgdzenia

Procesy przemieszczajg sie pomiedzy kolejkami.

L.J. Opalski, slajdy do wyktadu ,Systemy Operacyjne I” Adaptacja autorskich slajdéw do podrecznika Silberschatz,
10 Galvin, Gagne , ,Podstawy systeméw operacyjnych”

Kolejki procesow gotowych i do
urzadzen

queue header PCB, PCB,
ready head >
queue tail registers registers
g head Y
tape - =
unit 0 tail ==
ggg head +—a
: PCB PCB
unit 1 tail T 2 J
e
disk head
unit 0 tail \
PCB,
terminal head — S,
unit 0 tail ¥
L.J. Opalski, slajdy do wyktadu ,Systemy Operacyjne I’ 1 Adaptacja autorskich slajdow do podrecznika Silberschatz,

Galvin, Gagne , ,Podstawy systeméw operacyjnych”

Diagram kolejek w planowaniu
procesow

::l ready queue CPU >

I/O queue |‘7 I/0O request |‘7
. SSS——
time 'sluce <
expired
= SR
child fork a
executes / child r
interrupt wait for an
occurs /- interrupt
L.J. Opalski, slajdy do wyktadu ,Systemy Operacyjne I” Adaptacja autorskich slajdéw do podrecznika Silberschatz,

12 Galvin, Gagne , ,Podstawy systeméw operacyjnych”

Planisci

" Procesy mozna dzieli¢ na:
" ograniczone przez wejscie wyjscie - spedzajgce duzo wiecej czasu na

wykonywanie operacji wejscia/wyjscia niz na obliczenia (wiele krotkich faz
procesora).

= ograniczone przez dostep do procesora - sporadycznie generujgce

zamoOwienia na operacje wejscia/wyjscia (nieliczne ale dtugie fazy procesora).

" Planista krétkoterminowy (planista przydziatu procesora - short-term scheduler,
CPU scheduler)

wybiera do wykonania jeden z procesow gotowych i przydziela mu procesor.
podejmuje dziatanie bardzo czesto (n.p. co 100ms) = musi dziata¢ szybko.

" Planista dtugoterminowy (planista zadan - long-term scheduler, job scheduler)

wybiera procesy do kolejki proceséw gotowych

wywotywany dosy¢ rzadko (co sekundy, minuty) = moze dziata¢ powoli
kontroluje stopien wieloprogramowosci

usituje realizowa¢ dobrg mieszanke procesow

Nie wszystkie systemy operacyjne majg planiste dtugoterminowego

L.J. Opalski, slajdy do wyktadu ,Systemy Operacyjne I” Adaptacja autorskich slajdéw do podrecznika Silberschatz,

13 Galvin, Gagne , ,Podstawy systeméw operacyjnych”

Uzupetnienie o planowanie
srednioterminowe

System operacyjny moze wykorzystywac planiste sredniookresowego,
ktory zabezpiecza system przed zbyt duzym @ stopniem
wieloprogramowosci. Planista ten (w razie potrzeby) przesuwa proces
z pamieci na dysk, a w dogodnym czasie przywraca go z powrotem do
pamieci, by umozliwi¢ kontynuacje jego wykonania (swapping in/out)

e
swap in partially executed swap out
swapped-out processes

ready queue CPU » end
- - ==
I/0 waitin
O waiting .
queues
L.J. Opalski, slajdy do wyktadu ,Systemy Operacyjne I” Adaptacja autorskich slajdéw do podrecznika Silberschatz,

14 Galvin, Gagne , ,Podstawy systeméw operacyjnych”

Procesy

. Koncepcja procesu
. Planowanie procesow

. Dziatania na procesach

> W NP

. Procesy wspotpracujgce. Komunikacja i synchronizacja
miedzyprocesowa

L.J. Opalski, slajdy do wyktadu ,Systemy Operacyjne I” Adaptacja autorskich slajdéw do podrecznika Silberschatz,
15 Galvin, Gagne , ,Podstawy systeméw operacyjnych”

Operacje na procesach

System operacyjny musi obstugiwac:
" Tworzenie procesow

® Konczenie procesow

® Komunikacje | synchronizacje procesow

L.J. Opalski, slajdy do wyktadu ,Systemy Operacyjne I” Adaptacja autorskich slajdéw do podrecznika Silberschatz,

16 Galvin, Gagne , ,Podstawy systeméw operacyjnych”

worzenie procesu

" Procesy macierzyste (parent processes) tworzg procesy potomne
(children), ktore tez tworzg podprocesy. W rezultacie powstaje drzewo
procesow.

" Dzielenie zasobow — warianty:
* Proces macierzysty i podprocesy wspotdzielg zasoby.
= Podprocesy wspotdzielg czesS¢ zasobdw procesu macierzystego.
» Proces macierzysty i podprocesy nie dzielg zasobow.

" Wykonywanie procesow — warianty:
= Proces macierzysty i podprocesy sg wykonywane wspotbieznie.
= Proces macierzysty czeka na zakonczenie niektorych lub wszystkich
swoich procesow potomnych.

L.J. Opalski, slajdy do wyktadu ,Systemy Operacyjne I” Adaptacja autorskich slajdéw do podrecznika Silberschatz,
17 Galvin, Gagne , ,Podstawy systeméw operacyjnych”

worzenie procesu (c.d.)

" Przestrzen adresowa nowego procesu moze bycC zagospodarowana

na 2 sposoby:

= Proces potomny staje sie kopig procesu macierzystego.
= Proces potomny otrzymuje nowe zasoby (nowy program).

" W systemie UNIX

= funkcja systemowa fork () tworzy nowy proces

= funkcja systemowa execve () (uzyta typowo po wywotaniu
funkcji fork ()) zastepuje zawartosc przestrzeni adresowej

procesu przez nowy program.

parent

~o—@E
child _)

- - /’

L.J. Opalski, slajdy do wyktadu ,Systemy Operacyjne I”
18

L resumes
>;\/ wait 2
4
<
> exit() \/
N =

Adaptacja autorskich slajdéw do podrecznika Silberschatz,
Galvin, Gagne , ,Podstawy systeméw operacyjnych”

Tworzenie procesu — interfejs POSIX

#include <stdio.h>
#include <sys/types.h>
#include <unistd.h>
int main () {
pid t pidl, pid2;
int status;
pidl = fork(); /* fork a child process*/

if (pidl < 0) { /* error occurred */

perror ("Fork failed"); exit(1l);
} else if (pidl == 0) { /* child process */
execl ("/bin/1s", "1ls", " -1”,NULL); /* overwriting the child proces

memory with new program */
perror ("execlp”); exit(2);/* executed only if execl fails */
} else { /* parent process */

if ((pid2=wait (&status))>0){/* waiting for the child proces to complete

*/
fprintf (stderr, ,Potomek: PID=%d, status=%d, (int)pid2,status);
} else {
perror ("wait”); exit(3); /* wait() error */

}
return (0); /* alternaively: exit (0) */

}

}
L.J. Opalski, slajdy do wyktadu ,Systemy Operacyjne I” Adaptacja autorskich slajdéw do podrecznika Silberschatz,

19 Galvin, Gagne , ,Podstawy systeméw operacyjnych”

Drzewo procesow systemu Linux

. login kt hreadd ' sshd
pid = 8415 pid =2 pid = 3028
bash khel per pdf l ush _ sshd
pid = 8416 pid =6 pid = 200 pid = 3610

tcsch

enmacs
ps pid = 4005

pid = 9298 pid = 9204

Uwaga: we wspotczesnych systemach zamiast procesu init z
pid=1 moze wystepowac proces systemd

L.J. Opalski, slajdy do wyktadu ,Systemy Operacyjne I” Adaptacja autorskich slajdéw do podrecznika Silberschatz,
20 Galvin, Gagne , ,Podstawy systeméw operacyjnych”

Tworzenie procesu - interfejs Win32

#include <windows.h>
#include <stdio.h>
int main(VOID) {
STARTUPINFO si;
PROCESS INFORMATION pi;
ZeroMemory (&si, sizeof(si)); si.cb = sizeof(si);ZeroMemory(&pi, sizeof (pi));
// Start the child process.
if (!CreateProcess(NULL, // No module name (use command line).

"C:\\WINDOWS\\system32\\notepad.exe", // Command line.

NULL, // Process handle not inheritable.
NULL, // Thread handle not inheritable.
FALSE, // Set handle inheritance to FALSE.
0, // No creation flags.
NULL, // Use parent's environment block.
NULL, // Use parent's starting directory.
&si, // Pointer to STARTUPINFO structure.
&pi) // Pointer to PROCESS INFORMATION structure.
) | fprintf (stderr, "CreateProcess failed (%d).\n", GetLastError()); return -1;

WaitForSingleObject (pi.hProcess, INFINITE); // Wait until child process exits.
CloseHandle (pi.hProcess); CloseHandle(pi.hThread); //Close process and thread handles

L.J. Opalski, slajdy do wyktadu ,Systemy Operacyjne I” Adaptacja autorskich slajdéw do podrecznika Silberschatz,
21 Galvin, Gagne , ,Podstawy systeméw operacyjnych”

Wykonanie polecenia systemowego w
podprocesie — standardowa biblioteka C

#include <stdlib.h>

#include <stdio.h>

int main(void) {
char buf[512];

if (fgets (buf, sizeof (buf), stdin)) {/* wczytanie
polecenia do bufora */

int ret;

/* wykonanie polecenia w podprocesie interpretera
polecen (powioki) */

ret=system (buf) ;
if (ret) fprintf (stderr,”ret=%d\n”, ret);
return ret;

}

return 0O;

}

L.J. Opalski, slajdy do wyktadu ,Systemy Operacyjne I” Adaptacja autorskich slajdéw do podrecznika Silberschatz,
22 Galvin, Gagne , ,Podstawy systeméw operacyjnych”

Konczenie procesu

" Proces za pomocg wywotania funkcji systemowej (POSIX/C: exit ()) prosi
system operacyjny, aby go usunat.

= Kod wyjscia podprocesu jest przekazywany do procesu macierzystego
(POSIX: za pomoca funkcji wait ()). POSIX:

- zakonczony proces potomny dla ktérego rodzic nie wykonat wait () ,
to zombie

- Potomek, ktorego rodzic sie zakonczyt, staje sie sierotg (adoptowang
przez proces init).

= Wszystkie zasoby procesu sg odebrane przez system operacyjny.

" Proces macierzysty moze spowodowac zakonczenie innego procesu
(zazwyczaj potomka) za pomocg funkcji systemowej (np. w Win32:
TerminateProcess ()) z kilku powodow, n.p.

= proces potomny naduzyt przydzielonego mu zasobu
= wykonywane przez potomka zadanie jest zbedne

W niektorych systemach, gdy proces macierzysty konczy sie - system nie
pozwala potomkowi kontynuowa¢ dziatania (kaskada zakonczen:.
potomkowie, potomkowie potomkow itd.) .

L.J. Opalski, slajdy do wyktadu ,Systemy Operacyjne I” Adaptacja autorskich slajdéw do podrecznika Silberschatz,
23 Galvin, Gagne , ,Podstawy systeméw operacyjnych”

Procesy

. Koncepcja procesu
. Planowanie procesow

. Dziatania na procesach

> W NP

. Procesy wspétpracujgce. Komunikacja i synchronizacja
miedzyprocesowa

L.J. Opalski, slajdy do wyktadu ,Systemy Operacyjne I” Adaptacja autorskich slajdéw do podrecznika Silberschatz,
24 Galvin, Gagne , ,Podstawy systeméw operacyjnych”

Procesy wspoipracujace

" Proces niezalezny nie moze oddziatywac¢ na inne procesy, a te z kolei
nie mogg oddziatywac na jego dziatanie.

" Procesy wspotpracujace oddziatujg wzajemnie na swoje wykonanie
(dzielg dane). System udostepnia takim procesom:

= mozliwos¢ wspotbieznego wykonania
= ustugi komunikacji (miedzyprocesowej)
= ustugi synchronizacji

" Zalety wspotpracy procesow
= dzielenie informacji (np. pomiedzy réznymi uzytkownikami)
= przyspieszanie obliczen (dla komputera o wielu procesorach czy
kanatach wejscia/wyjscia)
= modularnosc

= wygoda (z tytutu rownolegtego wykonywania kilku czynnosci)

L.J. Opalski, slajdy do wyktadu ,Systemy Operacyjne I” Adaptacja autorskich slajdéw do podrecznika Silberschatz,

25 Galvin, Gagne , ,Podstawy systeméw operacyjnych”

Modele komunikacji miedzyprocesowej

|

process A L process A

orocess B shared memory
process B

message queue
—> Mo (M4 | Mo Mg ... My,
kernel
kernel
(a) (b)

a) Przekazywanie komunikatow (message passing).

b) Pamiec¢ wspodtdzielona (shared memory). Poprawne wspotbiezne
wykorzystywanie operacji R/W wymaga synchronizacji (sekcja krytyczna)

L.J. Opalski, slajdy do wyktadu ,Systemy Operacyjne I”

Adaptacja autorskich slajdéw do podrecznika Silberschatz,

Galvin, Gagne , ,Podstawy systeméw operacyjnych”

