Procesy POSIX/UNIX/Linux

POSIX 1003.1

,Process — an address space with one or more threads executing within
that address space, and the required system resources for those threads”.

Note: Many of the system resources defined by IEEE Std 1003.1-2001 are
shared among all of the threads within a process. These include the
process ID, the parent process ID, process group ID, session membership,
real, effective, and saved set-user-ID, real, effective, and saved set-group-
ID, supplementary group IDs, current working directory, root directory, file
mode creation mask, and file descriptors.

Data ostatniej modyfikacji: 21.10.2019 L.J. Opalski, slajdy do wyktadu ,Systemy Operacyjne I”



Procesy w systemie Unix

" Proces jest wykonujgcym sie programem.

" Procesy sg rozrozniane za pomocg identyfikatorow procesow (process identifier,
PID), ktore sg liczbami catkowitymi.

" Kazdy proces dziata na rzecz (konta) uzytkownika (0 numerycznym
identyfikatorze oznaczanym symbolicznie przez UID) oraz grupy uzytkownika
(identyfikator numeryczny oznaczany przez GID). UID i GID okreslajg prawa
dostepu do zasobow systemowych.

" W systemie Linux zdefiniowano ,personality identifier”, ktéry pozwala
modyfikowac¢ semantyke funkcji systemowych (zgodnos¢ z wariantami Unixa)

Przykiad. Wyswietlanie parametrow procesow uzytkownika lopalski

$ps -lu lopalski
FS UD PID PPID CPRINI ADDR SZ WCHANTTY  TIME CMD

8 O 1253 14457 14379 0 50 20 ? 142 pts/24 0:00 ps
8 S 1253 14379 14364 0 50 20 ? 423 ? pts/24 0:00 zsh

L.J. Opalski, slajdy do wykfadu ,Systemy Operacyjne I”



Procesy w systemie Unix — c.d.

Wszystkie procesy uzytkownikow sg potomkami jednego pierwotnego
procesu o PID=1 (tradycyjna nazwa: init, obecnie jest to zwykle systemd)

Przykiad. Linux - procesy systemowe

C_lobook:"# pstree -A

UID PID PPID C STIME TTY TIME CMD nit—+-atd

root 1 0 116:40 ? 00:00:01 init [2] i ~bash---pstree

root 2 1 016:40 2 00:00:00 [ksoftirgd/0] —Cromn

root 3 1 21640 2 00:00:02 [events/0] —dhclient

root 4 3 016:40 ?  00:00:00 [khelper] -events/H-+-aiosH

root 5 3 016:40 ? 00:00:00 [kacpid] ::kﬂcpld

root 29 3 016:40 ?  00:00:00 [kblockd/0] : kblockd-8
i —khelper

root 39 3 016:40 ? 00:00:00 [pdfiush] *_zx[pdf lushl

root 40 3 016:40 2 00:00:00 [pdfiush] _eximd

root 41 1 016:40 ? 00:00:00 [kswapdO] —5*[gEttg]

root 42 3 016:40 2 00:00:00 [aio/0]

—khubd
-k journald
-klogd
-k=eriod
-k=oftirgd-H
-kswapdH

Ipd
—porimap
-rpc.statd

-zshd
root 1857 1 0 16:40 tty2 00:00:00 /sbhin/getty 38400 tty2 —sgslugd

daemon 1419 016:40 2 00:00:00 /sbin/portmap
root 1753 1 016:40 ~? 00:00:00 /sbin/syslogd
root 1756 1 016:40 2 00:00:00 /sbin/klogd

[Ey

root 1797 1 0 16:40 ? 00:00:00 /usr/sbin/inetd
Ip 1801 1 016:40 7 00:00:00 /usr/sbin/lpd -s

1
1
1
]
1
1
1
]
1
[]
1
]
1
]
1
]
1
]
i—inetd
i
1
]
1
]
1
1
1
]
1
1
1
|
i
root 1808 1 016:40 ? 00:00:00 /usr/sbin/sshd '
1
I

......... 3 L.J. Opalski, slajdy do wykfadu ,Systemy Operacyjne I”



Procesy w systemie Unix — c.d.

Liczba i nazwy procesow systemowych roznig sie pomiedzy systemami.
Wyjatkiem jest proce o PID==1 (init/systemd), ktérego nazwa, PID i misja sg

ustalone

Przykiad. SunOS 5.9 — wybrane procesy systemowe

UID PID PPID C STIME TTY

root
root
root

W N = O

root
root 282

root 305
root 372
root 367
daemon 369
root 400

0

0
0
0

1
1
1
1
1

0
0
0

04:52:16 ?
04:52:16 ?
04:52:16 ?
04:52:16 ?

04:52:46 ?

04:52:47 ?
04:52:49 7
04:52:48 ?
04:52:48 ?
04:52:49 ?

root 1183 11350 15:59:16 7

TIME CMD

0:01 sched
0:03 /etc/init -
0:00 pageout
24:56 fsflush

0:01 /usr/sbin/rpcbind

0:00 /usr/sbin/inetd -s

0:55 /usr/lib/autofs/automountd
0:00 /usr/lib/nfs/lockd

0:00 /usr/lib/nfs/statd

0:00 /usr/sbin/cron

0:00 dtgreet -display :17

L.J. Opalski, slajdy do wykfadu ,Systemy Operacyjne I”



Srodowisko wykonania procesu

® Czescig srodowiska wykonania procesu UNIX sg zmienne srodowiskowe
(environment variables). Majg one postac:

nazwa=wartosc¢
Czesto spotykane (predefiniowane) zmienne srodowiskowe:

PATH - lista sciezek dostepu do plikdw wykonywalnych realizujgcych polecenia powtoki
HOME - katalog macierzysty uzytkownika

PWD - aktualny katalog

PS1,PS2 - pierwszy i drugi tekst zachety

TERM - nazwa (typ, model) uzywanego terminala

SHELL - uzywana powioka
LOGNAME -nazwa uzytkownika
RANDOM - liczba losowa

EDITOR - edytor uzytkownika

PPID - Nr procesu rodzicielskiego

® Zmienne Srodowiskowe sg dziedziczone przez proces potomny uzyskany
przez wywotanie fork(). Przy wywotywaniu execle(), execve() zbior zmiennych
srodowiskowych jest definiowany na nowo, dla pozostatych funkcji grupy exec
— zmienne srodowiskowe nie zmieniajg sie.

L.J. Opalski, slajdy do wykfadu ,Systemy Operacyjne I”



Srodowisko wykonania procesu — c.d.

" Nadawanie wartosci zmiennym srodowiskowym
= Powtoka bash, ksh, zsh itp.
name=value; export name
= Program w jezyku C
putenv(’name=value”);

Uwaga: zmiana dotyczy procesu, wykonujgce powyzsze czynnosci (i
nowo utworzonych procesow potomnych — jesli dziedziczg
srodowisko).

" Pobieranie wartosci zmiennych srodowiskowych
= Powtoka sh, bash, zsh itp.

echo $name # wyswietlanie warto$ci zmiennej name
= Program w jezyku C

char *p=getenv ("name”) ;

if (p) printf (”"name=%s\n”,p);
else printf(,Nie zdefiniowano zmiennej name\n”);

L.J. Opalski, slajdy do wykfadu ,Systemy Operacyjne I”



Srodowisko wykonania procesu — c.d.
POSIX:

Przy tworzeniu procesu, tworzone sg trzy strumienie (streams ):

" standardowe wejscie (standard input)

® standardowe wyjscie (standard output) oraz

" standardowe wyjscie diagnostyczne (standard error output).

Po otwarciu strumien diagnostyczny nie jest w petni buforowany (is not
fully buffered); pozostate strumienie sg w petni buforowane (are fully
buffered) - jesli tylko strumien nie jest zwigzany z urzgdzeniem

Interakcyjnym.

L.J. Opalski, slajdy do wykfadu ,Systemy Operacyjne I”



Cykl zycia procesu

funkcje uzytkownika lub

biblioteczne g
wywola nieT i return
funkcja main »
uzytkownika
wywola nieT l return
A 4 A 4
exit _funkcja _exit funkcja
procedura inicjujgca ——p Dbiblioteczna ——3 biblioteczna
exit _exit
wywolanie p}ogra mu wywolanie funkciji systeinowej exit
funkcja systemowa funkcja systemowa
exec jadro systemu exit

Droga: od utworzenia procesu funkcjg systemowg exec
do jego zakonczenia funkcjg systemowg exit

L.J. Opalski, slajdy do wykfadu ,Systemy Operacyjne I”



Cykl zycia procesu — c.d.

" Funkcje systemowe zwigzane z tworzeniem i konczeniem procesow:

fork tworzy nowy proces (logiczng kopie procesu macierzystego)

Funkcja rodziny exec (tu execl) jest uzywana po rozwidleniu procesu (za pomocg
fork), aby zastgpiC przestrzen adresowg wotajgcego nowym programem
Funkcja_exit konczy dziatanie procesu

Proces moze oczekiwac (funkcja wait) na zakonczenie procesu potomka; wait
udostepnia PID zakonczonego procesu, aby proces rodzic mogt okreslic ktory
potomek zakonczyt dziatanie, a takze status (okreslajgcy przyczyne zakonczenia).

pid_t pidl, pid2;
pidl = fork(); /* duplikowanie biezgcego procesu */
if (pid1 < 0) { perror("Fork failed"); /* btgd wykonania fork .... */ exit(1);
}elseif (pidl ==0) { /* proces potomny */
execl("/bin/ls", "Is", ,-I", NULL); /* Kod wyjscia tego procesu zalezy od nowej zawartosci procesu */
perror("execl’); /* ta linia nigdy sie nie wykona, jesli execl() sie wykona */
exit(2);
} else { /* proces macierzysty */
if( (pid2=wait (&status)) > 0 ){/* oczekiwanie na proces potomny */
/* wykorzystanie PID zakonczonego procesu (pid2) i informacji o przyczynie zakonczenia (status) */

} else {/* zakonczenie awaryjne */
perror("wait”); /* Btad wykonania wait */ exit(3);

L.J. Opalski, slajdy do wykfadu ,Systemy Operacyjne I”




Cykl zycia procesu — c.d.

" Proces potomny (uzyskany przez wywotanie £ork ()) dziedziczy od procesu
macierzystego m.in.:

= Zawartosc przestrzeni adresowej uzytkownika (za wyjatkiem wartosci
zwracanej przez funkcje fork ())

= Deskryptory plikow (tgczy, gniazd)

= Zmienne srodowiskowe (modyfikowalne przez execle (), execve ())
= Odwzorowania plikow w pamieci (mmap () )

= Obstuge sygnatow

= Polityke planowania i priorytet

" Proces potomny nie dziedziczy m.in.:
= Stanu budzikow
= Sygnatéw oczekujgcych
= QOperacji asynchronicznych
= Innych watkéw niz ten, ktory wywotat fork ()

10 L.J. Opalski, slajdy do wykfadu ,Systemy Operacyjne I”



Cykl zycia procesu — c.d.

" Proces uzyskany przez wywotanie funkcji systemowej exec dziedziczy m.in.:

PID, PPID,PGID, RUID, RGID, zawartos¢ licznikow alarmow
Katalog biezgcy i domowy, umask, ulimit

Deskryptory plikow (tgczy, gniazd), za wyjgtkiem tych oznaczonych jako
close-on-exec

Zmienne srodowiskowe (o ile nie sg modyfikowalne przez wywotanie
funkcji bibliotecznych execle(), execve())

Maske sygnatow i sygnaty oczekujgce
Terminal sterujgcy
Ograniczenia zasobow

- Sygna’fy obstugiwane domyslnie (SIG_DFL) oraz |gnorowane (SIGN_IGN) nie
zmieniajg dyspozycji, za Wyjatklem SIGCHLD (jesli byt ignorowany — po
przeistoczeniu dyspozycja nie jest okreslona: SIGN DFL albo SIGN IGN).
Sygnaty obstugiwane przez funkcje obstugi (handler) zmieniajg dyspozycje na
domysing.

® Stan jednostki zmiennoprzecinkowej staje sie poczatkowy (jak po inicjalizaciji).

® Licznik zuzycia czasu procesora nie jest zerowany.

1 L.J. Opalski, slajdy do wykfadu ,Systemy Operacyjne I”



Cykl zycia procesu — c.d.

® S3 dwa typy konczenia procesu:
= Normalny — przez powr6t z main(), czy wywotanie exit() , _exit()
=  Awaryjny — przez wywotanie abort() , albo wskutek doreczenia pewnych
sygnatow
" Przy konczeniu procesu zamykane sg deskryptory i strumienie tego procesu.

" Jesli rodzic konczonego procesu ustawit flage SA_ NOCLDWAIT albo reakcie
sygnatu SIGCHLD na SIG_IGN, to:

= [nformacja o statusie potomka jest gubiona, a jego czas zycia sie konczy

= W przeciwnym razie tworzona jest informacja o statusie, potomek
przeksztatcony jest w : ,proces niezywy” , a do rodzica jest wystany sygnat
SIGCHLD .

" Proces, ktory zakonczyt dziatanie, ale oczekuje na pobranie przez proces
macierzysty przyczyny tego zakonczenia (wait) to ,proces niezywy” (zombie).

" Proces staje sie sierota, gdy jego proces macierzysty konczy sie; obowigzkKi
procesu macierzystego przejmuje wowczas systemowy proces o ustalonym PID
(init/systemd,..). Uwaga: W SO UNIX PID=1; POSIX nie narzuca PID=1.

12 L.J. Opalski, slajdy do wykfadu ,Systemy Operacyjne I”



Funkcje do tworzenia procesow

pid t fork (void)
tworzy logiczng kopie biezgcego procesu; zwraca:
—1 - gdy sie nie powiedzie (kod btedu w errno)
O - w procesie potomnym
>0 - w procesie macierzystym (PID procesu potomnego)

pid t vfork (void)

tworzy kopie biezgcego procesu (dla procesu wielowgtkowego — kopie watku
wotajgcego vfork()), ktdra wspotdzieli przestrzen adresowg z procesem
macierzystym. Proces macierzysty (watek wotajgcy vfork()) jest wstrzymany,
az proces potomny wywota exec () bgdz exit(). Proces potomny nie powinien
wotac exit(), gdyz funkcja ta opréznia bufory i zamyka (wspoétdzielone z
procesem macierzystym) standardowe kanaty wejscia/wyjscia. Uzywanie
vfork() dla duzych proceséw powoduje znaczne oszczednosci czasu
procesora, ale jest potencjalnie niebezpieczne. We wspotczesnych systemach z
pamiecig wirtualng funkcja fork() jest realizowana efektywnie (z uzyciem
,COpYy-on-write”) => uzywanie funkcji v£ork() nie jest uzasadnione.

13 L.J. Opalski, slajdy do wykfadu ,Systemy Operacyjne I”



Funkcje do tworzenia procesow - c.d.

int clone(int (*£fn) (void *) ,void *child stack,int flags, void *argq)

tworzy nowy proces, ktory moze wspotdzieli¢ czes¢ kontekstu procesu wotajgcego.
Nowy proces wykonuje kod fn(arg) (a nie jak w przypadku fork() - kod procesu

wotajgcego), a kiedy kod ten wykonuje return — proces potomny sie konczy (moze sie
rowniez zakonczy¢ wywotujgc exit(), bgdz wskutek doreczenia sygnatu).
child stack musi wskazywac na odpowiednio dtugi obszar pamieci, ktéry bedzie
wykorzystywany jako stos nowego procesu. Bity parametru £1lags okreslajg co jest
wspotdzielone. Symboliczne oznaczenia bitow tego parametru
= CLONE PARENT — wspotdzielenie PPID procesu macierzystego
= CLONE_FS — wspoétdzielenie informacji o korzeniu systemu plikéw: katalogu
biezgcym u-masce.
= CLONE FILES — wspofdzielenie tablicy deskryptorow plikow
= CLONE_ SIGHAND — wspoétdzielenie tablicy obstugi sygnatow
= CLONE_ VM - wspotdzielenie pamieci wirtualnej
Ponadto:
= CLONE VFORK - wigczenie wstrzymywania procesu macierzystego az do
zakonczenia procesu potomnego
Funkcja zwraca identyfikator watku (TID) procesu potomnego, lub —1 (errno)
clone () nie jest funkcja zgodna ze standardem POSIX.

4 L.J. Opalski, slajdy do wykfadu ,Systemy Operacyjne I”



Funkcje do nadzoru procesow

pid t wait(int *pstatus)

czeka na zakonczony podproces, zwracajgc jego PID.Funkcja zwraca —1 w
przypadku wykrycia btedu (np. jesli nie ma podprocesu wykonujgcego sie ani
zakonczonego, badz wystgpit sygnat). Dla pomysinego wykonania, gdy
status!=NULL => status=*pstatus zawiera informacje o przyczynie
zakonczenia. Nastepujgce makro pozwalajg skorzystac z wartosci status:

WIFEXITED (status) 1, gdy podproces zakonczony przez exit (),
0 w przeciwnym przypadku

WEXITSTATUS (status) argument wywotania exit(), gdy podproces zostat
zakonczony przez exit()

WIFSIGNALED (status) 1, gdy podproces zostat zakonczony wskutek doreczenia
sygnatu, 0 w przeciwnym przypadku

WTERMSIG (status) numer sygnatu, ktory zakonczyt proces

WIFSTOPPED (status) 1, gdy podproces zatrzymano, bgdz 0

WSTOPSIG (status) nr sygnatu, ktory zatrzymat proces

15 L.J. Opalski, slajdy do wykfadu ,Systemy Operacyjne I”



Funkcje do nadzoru procesow — c.d.

pid t waitpid(pid t pid, int *pstatus. 1int options)
czeka na zakonczony podproces:
pid == -1 =>nadowolny podproces
pid < -1 =>na dowolny podproces nalezgcy do grupy procesow pgid=-pid

pid == => na dowolny podproces nalezgcy do tej samej grupy procesow
CO proces wotajgcy

pid > 0 =>na podproces o0 PID==pid
Parametr options jest sumg logiczng 0 i jednej lub dwoch wartosci:
WNOHANG — waitpid powraca natychmiast jesli nie ma zakohczonego potomka

WUNTRACED - waitpid powraca rowniez, gdy ktorys z potomkow zostat
wstrzymany.

waitpid zwraca PID podprocesu, bgdz —1 w przypadku btedu

16 L.J. Opalski, slajdy do wykfadu ,Systemy Operacyjne I”



Funkcje do nadzoru procesow — c.d.

vold _exit(int status)

funkcja biblioteczna powodujgca ,bezzwtoczne zakonczenie” procesu przez
wywotanie funkcji systemowej exit. Uwaga: otwarte pliki sg zamykane bez
oprézniania buforow; procesy potomne sg ,adoptowane” przez proces init, a
proces macierzysty otrzymuje sygnat SIGCHLD.

volid exit(int status)

funkcja biblioteczna wywotujgca funkcje exit po wywotaniu funkciji
zarejestrowanych przez atexit () (bgdz on_exit ()), po wypisaniu danych
wszystkich czesciowo zapisanych buforéw oraz po zamknieciu plikéw
tymczasowych utworzonych za pomocg tmpfile(). Jesli konczony proces jest
liderem ses;ji terminalowej, to kazdy pierwszoplanowy proces grupy procesow
zwigzanych z tym terminalem dostaje sygnat SIGHUP; znika tez dotychczasowy
zwigzek terminala sterujgcego z sesjg terminalowa.

Wartos¢ zmiennej status moze byc¢ rowna 0, EXIT _SUCCESS, EXIT_FAILURE,
albo inna wartos¢, przy czym tylko 8 najmniej znaczgcych bitdéw tej liczby (t.].
status & 0377) bedzie dostepne oczekujgcemu procesowi.

17 L.J. Opalski, slajdy do wykfadu ,Systemy Operacyjne I”



Funkcje do tworzenia/konczenia/nadzoru
procesow — c.d.

Funkcje biblioteczne zwigzane z funkcjg systemowg exec

execlp(char *file,char *arg0,..., NULL) M’ execvp(char *file,char **argv)

argv
zamien file na
path
execl(char *path,char *arg0,..., NULL) MP execv(cﬂar path,
argv char **argv)
ldodaj envp
execle(char *path,char *arg0, ...,NULL, utwc’)rzI execve(char *path,
char **envp) argv char **argv, char **envp)
funkcja
systemowa
exec

18 L.J. Opalski, slajdy do wykfadu ,Systemy Operacyjne I”



Modyfikacja praw dostepu procesow

®" Funkcja fork nie zmienia identyfikatorow UID i GID procesu (rzeczywistych,
obowigzujgcych, ani zapamietanych)

" Proces uzytkownika o (obowigzujgcym) UID==0 moze, za pomocg funkcji
setuid (), zmieniC (rzeczywiste, obowigzujgce oraz zapamietane) UID (a za
pomocyg setgid() GID) procesu na dowolne wartosci zarejestrowane w
systemie.

" Wywotanie funkcji exec zazwyczaj zachowuje (rzeczywiste, obowigzujace i
zapamietane) UID i GID wotajgcego procesu. Jesli jednak ustawiC bit setuid w i-
wezle pliku wykonywalnego, to obowigzujgcym identyfikatorem (effective user
identifier) i zapamietanym (saved user identifier) procesu wykonujgcego ten plik
staje sie identyfikator wtasciciela pliku, podczas gdy rzeczywisty identyfikator
uzytkownika (real user identifier) pozostaje niezmienny. Podobnie bit setgid
zmienia obowigzujacy i zapamietany identyfikator grupy uzytkownika
wykonujgcego program z tym atrybutem (na czas wykonywania programu). W
kodzie programu mozna przetaczac identyfikator obowigzujgcy pomiedzy
identyfikatorami: rzeczywistym i zapamietanym.

" Bity setuid/setgid nadajg wiec “zwyktym uzytkownikom” prawa dostepu (np.
do plikdw) takie jakie majg wiasciciele programow, ktérzy te bity ustawili.

® Bity setuidi setgid dla niezbyt starannie napisanych programoéw mogag
zmniejszac bezpieczenstwo systemu.

19 L.J. Opalski, slajdy do wykfadu ,Systemy Operacyjne I”



Grupy procesow

" Grupa procesow to zbior procesow wspotpracujagcych ze sobg przy
wykonywaniu wspolnych zadan. Proces dziedziczy przynaleznosc¢ do grupy
procesow po przodku, ale moze tez utworzy¢ nowg grupe (stajgc sie jej
przywodcg). ldentyfikatorem grupy procesow jest PID przywodcy.

" Sesja — kolekcja grup procesow, utworzona dla realizacji sterowania zadaniami
(job control) przy pomocy terminala sterujgcego. Operacje: suspend/resume,
fg/bg, kontrola uzycia terminala przez procesy. Kazda grupa procesow nalezy do
jakiejs sesji. Przynaleznosc¢ procesu do sesji jest dziedziczona

" Grupy procesow sg uzywane przez powtoki do nadzorowania pracy wielu zadan..

= Procesy pierwszoplanowe (foreground proces group ) majg
nieograniczony dostep do terminala sterujgcego sesji. Pozostate procesy
(drugoplanowe, background) — nie.

= Sekwencje sterujgce terminala mogg powodowac przestanie sygnatow do
procesow grupy pierwszoplanowe;.

" Zadanie (job) — zbidr procesow jednego potoku powtoki (i ich potomstwo), ktore
sg w tej samej grupie procesow. Zadanie dziedziczy terminal sterujgcy po
procesie — rodzica.

0 L.J. Opalski, slajdy do wykfadu ,Systemy Operacyjne I”



Powloka zgltoszeniowa klasycznego UNIXa

® Proces init tworzy proces potomny getty (czy t.p.) ktory staje sie przywoddcyg
sesji, otwiera dostep do terminala, oczekuje na nazwe rejestracyjng (login name)
uzytkownika, po czym wywotuje program login z parametrem - nazwg uzytkownika

® login pobiera hasto uzytkownika, wyznacza skrot i porownuje go z wartoscig
pamietang w /etc/shadow (albo w innym miejscu systemu). Przy pomysinym
poréwnaniu ustawia dla procesu identyfikator uzytkownika (UID) i jego grupy (GID)
np. wg zawartosci pliku /etc/passwd (albo NIS) oraz rozpoczyna sesje

terminalowg przez wywotanie powtoki zgtoszeniowej (login shell) uzytkownika
(okreslonej w /etc/passwd). Powtoka ta pozwala uzytkownikowi na prace

interakcyjna.

init, PID=1
ifork
nit] ) L. )

" PID=pid1_y©¥ec
getty | getty getty
exec >PID:pid2

> PID=pid3

Y
login

pid1, pid2, pid3 sg
exec rézne pomiedzy sobg i
) réozne od 1

L.J. Opalski, slajdy do wykfadu ,Systemy Operacyjne I”

21



