
L.J. Opalski, slajdy do wykładu „Systemy Operacyjne I”
1

Procesy POSIX/UNIX/Linux

POSIX 1003.1

„Process – an address space with one or more threads executing within

that address space, and the required system resources for those threads”.

Note: Many of the system resources defined by IEEE Std 1003.1-2001 are

shared among all of the threads within a process. These include the

process ID, the parent process ID, process group ID, session membership,

real, effective, and saved set-user-ID, real, effective, and saved set-group-

ID, supplementary group IDs, current working directory, root directory, file

mode creation mask, and file descriptors.

Data ostatniej modyfikacji: 21.10.2019

L.J. Opalski, slajdy do wykładu „Systemy Operacyjne I”
2

Procesy w systemie Unix
▪ Proces jest wykonującym się programem.

▪ Procesy są rozróżniane za pomocą identyfikatorów procesów (process identifier,

PID), które są liczbami całkowitymi.

▪ Każdy proces działa na rzecz (konta) użytkownika (o numerycznym

identyfikatorze oznaczanym symbolicznie przez UID) oraz grupy użytkownika

(identyfikator numeryczny oznaczany przez GID). UID i GID określają prawa

dostępu do zasobów systemowych.

▪ W systemie Linux zdefiniowano „personality identifier”, który pozwala

modyfikować semantykę funkcji systemowych (zgodność z wariantami Unixa)

Przykład. Wyświetlanie parametrów procesów użytkownika lopalski

$ ps -lu lopalski

F S UID PID PPID C PRI NI ADDR SZ WCHAN TTY TIME CMD

8 O 1253 14457 14379 0 50 20 ? 142 pts/24 0:00 ps

8 S 1253 14379 14364 0 50 20 ? 423 ? pts/24 0:00 zsh

L.J. Opalski, slajdy do wykładu „Systemy Operacyjne I”
3

Procesy w systemie Unix – c.d.

Wszystkie procesy użytkowników są potomkami jednego pierwotnego

procesu o PID=1 (tradycyjna nazwa: init, obecnie jest to zwykle systemd)

Przykład. Linux - procesy systemowe
UID PID PPID C STIME TTY TIME CMD

root 1 0 1 16:40 ? 00:00:01 init [2]

root 2 1 0 16:40 ? 00:00:00 [ksoftirqd/0]

root 3 1 2 16:40 ? 00:00:02 [events/0]

root 4 3 0 16:40 ? 00:00:00 [khelper]

root 5 3 0 16:40 ? 00:00:00 [kacpid]

root 29 3 0 16:40 ? 00:00:00 [kblockd/0]

root 39 3 0 16:40 ? 00:00:00 [pdflush]

root 40 3 0 16:40 ? 00:00:00 [pdflush]

root 41 1 0 16:40 ? 00:00:00 [kswapd0]

root 42 3 0 16:40 ? 00:00:00 [aio/0]

.........

daemon 1419 1 0 16:40 ? 00:00:00 /sbin/portmap

root 1753 1 0 16:40 ? 00:00:00 /sbin/syslogd

root 1756 1 0 16:40 ? 00:00:00 /sbin/klogd

.........

root 1797 1 0 16:40 ? 00:00:00 /usr/sbin/inetd

lp 1801 1 0 16:40 ? 00:00:00 /usr/sbin/lpd -s

root 1808 1 0 16:40 ? 00:00:00 /usr/sbin/sshd

root 1857 1 0 16:40 tty2 00:00:00 /sbin/getty 38400 tty2

.........

L.J. Opalski, slajdy do wykładu „Systemy Operacyjne I”
4

Procesy w systemie Unix – c.d.

Liczba i nazwy procesów systemowych różnią się pomiędzy systemami.

Wyjątkiem jest proce o PID==1 (init/systemd), którego nazwa, PID i misja są
ustalone

Przykład. SunOS 5.9 – wybrane procesy systemowe
UID PID PPID C STIME TTY TIME CMD

root 0 0 0 04:52:16 ? 0:01 sched

root 1 0 0 04:52:16 ? 0:03 /etc/init -

root 2 0 0 04:52:16 ? 0:00 pageout

root 3 0 1 04:52:16 ? 24:56 fsflush

...

root 282 1 0 04:52:46 ? 0:01 /usr/sbin/rpcbind

root 305 1 0 04:52:47 ? 0:00 /usr/sbin/inetd -s

root 372 1 0 04:52:49 ? 0:55 /usr/lib/autofs/automountd

root 367 1 0 04:52:48 ? 0:00 /usr/lib/nfs/lockd

daemon 369 1 0 04:52:48 ? 0:00 /usr/lib/nfs/statd

root 400 1 0 04:52:49 ? 0:00 /usr/sbin/cron

...

root 1183 1135 0 15:59:16 ? 0:00 dtgreet -display :17

...

L.J. Opalski, slajdy do wykładu „Systemy Operacyjne I”
5

Środowisko wykonania procesu

▪ Częścią środowiska wykonania procesu UNIX są zmienne środowiskowe
(environment variables). Mają one postać:

nazwa=wartość

Często spotykane (predefiniowane) zmienne środowiskowe:

PATH - lista ścieżek dostępu do plików wykonywalnych realizujących polecenia powłoki
HOME - katalog macierzysty użytkownika
PWD - aktualny katalog
PS1,PS2 - pierwszy i drugi tekst zachęty
TERM - nazwa (typ, model) używanego terminala
SHELL - używana powłoka
LOGNAME -nazwa użytkownika
RANDOM - liczba losowa
EDITOR - edytor użytkownika
PPID - nr procesu rodzicielskiego

▪ Zmienne środowiskowe są dziedziczone przez proces potomny uzyskany
przez wywołanie fork(). Przy wywoływaniu execle(), execve() zbiór zmiennych
środowiskowych jest definiowany na nowo, dla pozostałych funkcji grupy exec
– zmienne środowiskowe nie zmieniają się.

L.J. Opalski, slajdy do wykładu „Systemy Operacyjne I”
6

Środowisko wykonania procesu – c.d.

▪ Nadawanie wartości zmiennym środowiskowym

▪ Powłoka bash, ksh, zsh itp.

name=value; export name

▪ Program w języku C

putenv(”name=value”);

Uwaga: zmiana dotyczy procesu, wykonujące powyższe czynności (i
nowo utworzonych procesów potomnych – jeśli dziedziczą
środowisko).

▪ Pobieranie wartości zmiennych środowiskowych

▪ Powłoka sh, bash, zsh itp.

echo $name # wyświetlanie wartości zmiennej name

▪ Program w języku C

...

char *p=getenv(”name”);

if(p) printf (”name=%s\n”,p);

else printf(„Nie zdefiniowano zmiennej name\n”);

...

L.J. Opalski, slajdy do wykładu „Systemy Operacyjne I”
7

Środowisko wykonania procesu – c.d.

POSIX:

Przy tworzeniu procesu, tworzone są trzy strumienie (streams):

▪ standardowe wejście (standard input)

▪ standardowe wyjście (standard output) oraz

▪ standardowe wyjście diagnostyczne (standard error output).

Po otwarciu strumień diagnostyczny nie jest w pełni buforowany (is not

fully buffered); pozostałe strumienie są w pełni buforowane (are fully

buffered) - jeśli tylko strumień nie jest związany z urządzeniem

interakcyjnym.

L.J. Opalski, slajdy do wykładu „Systemy Operacyjne I”
8

Cykl życia procesu

Droga: od utworzenia procesu funkcją systemową exec
do jego zakończenia funkcją systemową exit

funkcje użytkownika lub
biblioteczne

funkcja main

użytkownika

procedura inicjująca

jądro systemu

funkcja
biblioteczna

exit

funkcja
biblioteczna

_exit

wywolanie return

wywolanie return

wywolanie programu wywolanie funkcji systemowej exit

exit _exit

funkcja systemowa
exec

funkcja systemowa
exit

L.J. Opalski, slajdy do wykładu „Systemy Operacyjne I”
9

Cykl życia procesu – c.d.
▪ Funkcje systemowe związane z tworzeniem i kończeniem procesów:

▪ fork tworzy nowy proces (logiczną kopię procesu macierzystego)

▪ Funkcja rodziny exec (tu execl) jest używana po rozwidleniu procesu (za pomocą
fork), aby zastąpić przestrzeń adresową wołającego nowym programem

▪ Funkcja_exit kończy działanie procesu

▪ Proces może oczekiwać (funkcja wait) na zakończenie procesu potomka; wait
udostępnia PID zakończonego procesu, aby proces rodzic mógł określić który
potomek zakończył działanie, a także status (określający przyczynę zakończenia).

pid_t pid1, pid2;

pid1 = fork(); /* duplikowanie bieżącego procesu */

if (pid1 < 0) { perror("Fork failed"); /* błąd wykonania fork */ exit(1);

} else if (pid1 == 0) { /* proces potomny */

execl("/bin/ls", "ls", „-l", NULL); /* Kod wyjścia tego procesu zależy od nowej zawartości procesu */

perror(”execl”); /* ta linia nigdy się nie wykona, jeśli execl() się wykona */

exit(2);

} else { /* proces macierzysty */

if((pid2=wait (&status)) > 0){/* oczekiwanie na proces potomny */

/* wykorzystanie PID zakończonego procesu (pid2) i informacji o przyczynie zakończenia (status) */

...

} else {/* zakończenie awaryjne */

perror(”wait”); /* Błąd wykonania wait */ exit(3);

}

}

L.J. Opalski, slajdy do wykładu „Systemy Operacyjne I”
10

Cykl życia procesu – c.d.

▪ Proces potomny (uzyskany przez wywołanie fork()) dziedziczy od procesu
macierzystego m.in.:

▪ Zawartość przestrzeni adresowej użytkownika (za wyjątkiem wartości
zwracanej przez funkcję fork())

▪ Deskryptory plików (łączy, gniazd)

▪ Zmienne środowiskowe (modyfikowalne przez execle(), execve())

▪ Odwzorowania plików w pamięci (mmap())

▪ Obsługę sygnałów

▪ Politykę planowania i priorytet

▪ Proces potomny nie dziedziczy m.in.:

▪ Stanu budzików

▪ Sygnałów oczekujących

▪ Operacji asynchronicznych

▪ Innych wątków niż ten, który wywołał fork()

L.J. Opalski, slajdy do wykładu „Systemy Operacyjne I”
11

Cykl życia procesu – c.d.

▪ Proces uzyskany przez wywołanie funkcji systemowej exec dziedziczy m.in.:

▪ PID, PPID,PGID, RUID, RGID, zawartość liczników alarmów

▪ Katalog bieżący i domowy, umask, ulimit

▪ Deskryptory plików (łączy, gniazd), za wyjątkiem tych oznaczonych jako
close-on-exec

▪ Zmienne środowiskowe (o ile nie są modyfikowalne przez wywołanie
funkcji bibliotecznych execle(), execve())

▪ Maskę sygnałów i sygnały oczekujące

▪ Terminal sterujący

▪ Ograniczenia zasobów

▪ Sygnały obsługiwane domyślnie (SIG_DFL) oraz ignorowane (SIGN_IGN) nie
zmieniają dyspozycji, za wyjątkiem SIGCHLD (jeśli był ignorowany – po
przeistoczeniu dyspozycja nie jest określona: SIGN_DFL albo SIGN_IGN).
Sygnały obsługiwane przez funkcję obsługi (handler) zmieniają dyspozycję na
domyślną.

▪ Stan jednostki zmiennoprzecinkowej staje się początkowy (jak po inicjalizacji).

▪ Licznik zużycia czasu procesora nie jest zerowany.

L.J. Opalski, slajdy do wykładu „Systemy Operacyjne I”
12

Cykl życia procesu – c.d.

▪ Są dwa typy kończenia procesu:

▪ Normalny – przez powrót z main(), czy wywołanie exit() , _exit()

▪ Awaryjny – przez wywołanie abort() , albo wskutek doręczenia pewnych
sygnałów

▪ Przy kończeniu procesu zamykane są deskryptory i strumienie tego procesu.

▪ Jeśli rodzic kończonego procesu ustawił flagę SA_NOCLDWAIT albo reakcię
sygnału SIGCHLD na SIG_IGN, to:

▪ Informacja o statusie potomka jest gubiona, a jego czas życia się kończy

▪ W przeciwnym razie tworzona jest informacja o statusie, potomek
przekształcony jest w : „proces nieżywy” , a do rodzica jest wysłany sygnał
SIGCHLD .

▪ Proces, który zakończył działanie, ale oczekuje na pobranie przez proces
macierzysty przyczyny tego zakończenia (wait) to „proces nieżywy” (zombie).

▪ Proces staje się sierotą, gdy jego proces macierzysty kończy się; obowiązki
procesu macierzystego przejmuje wówczas systemowy proces o ustalonym PID
(init/systemd,…). Uwaga: W SO UNIX PID=1; POSIX nie narzuca PID=1.

L.J. Opalski, slajdy do wykładu „Systemy Operacyjne I”
13

Funkcje do tworzenia procesów

pid_t fork(void)

tworzy logiczną kopię bieżącego procesu; zwraca:

–1 - gdy się nie powiedzie (kod błędu w errno)

0 - w procesie potomnym

>0 - w procesie macierzystym (PID procesu potomnego)

pid_t vfork(void)

tworzy kopię bieżącego procesu (dla procesu wielowątkowego – kopię wątku
wołającego vfork()), która współdzieli przestrzeń adresową z procesem

macierzystym. Proces macierzysty (wątek wołający vfork()) jest wstrzymany,

aż proces potomny wywoła exec () bądź _exit(). Proces potomny nie powinien

wołać exit(), gdyż funkcja ta opróżnia bufory i zamyka (współdzielone z

procesem macierzystym) standardowe kanały wejścia/wyjścia. Używanie
vfork() dla dużych procesów powoduje znaczne oszczędności czasu

procesora, ale jest potencjalnie niebezpieczne. We współczesnych systemach z
pamięcią wirtualną funkcja fork() jest realizowana efektywnie (z użyciem

„copy-on-write”) => używanie funkcji vfork() nie jest uzasadnione.

L.J. Opalski, slajdy do wykładu „Systemy Operacyjne I”
14

Funkcje do tworzenia procesów – c.d.

int clone(int (*fn)(void *),void *child_stack,int flags, void *arg)

tworzy nowy proces, który może współdzielić część kontekstu procesu wołającego.
Nowy proces wykonuje kod fn(arg) (a nie jak w przypadku fork() - kod procesu

wołającego), a kiedy kod ten wykonuje return – proces potomny się kończy (może się
również zakończyć wywołując exit(), bądź wskutek doręczenia sygnału).

child_stack musi wskazywać na odpowiednio długi obszar pamięci, który będzie

wykorzystywany jako stos nowego procesu. Bity parametru flags określają co jest

współdzielone. Symboliczne oznaczenia bitów tego parametru

▪ CLONE_PARENT – współdzielenie PPID procesu macierzystego

▪ CLONE_FS – współdzielenie informacji o korzeniu systemu plików: katalogu

bieżącym u-masce.

▪ CLONE_FILES – współdzielenie tablicy deskryptorów plików

▪ CLONE_SIGHAND – współdzielenie tablicy obsługi sygnałów

▪ CLONE_VM – współdzielenie pamięci wirtualnej

Ponadto:

▪ CLONE_VFORK - włączenie wstrzymywania procesu macierzystego aż do

zakończenia procesu potomnego

Funkcja zwraca identyfikator wątku (TID) procesu potomnego, lub –1 (errno)

clone() nie jest funkcją zgodną ze standardem POSIX.

L.J. Opalski, slajdy do wykładu „Systemy Operacyjne I”
15

Funkcje do nadzoru procesów

pid_t wait(int *pstatus)

czeka na zakończony podproces, zwracając jego PID.Funkcja zwraca –1 w
przypadku wykrycia błędu (np. jeśli nie ma podprocesu wykonującego się ani
zakończonego, bądź wystąpił sygnał). Dla pomyślnego wykonania, gdy
status!=NULL => status=*pstatus zawiera informację o przyczynie
zakończenia. Następujące makro pozwalają skorzystać z wartości status:

WIFEXITED(status) 1, gdy podproces zakończony przez exit(),

0 w przeciwnym przypadku

WEXITSTATUS(status) argument wywołania exit(), gdy podproces został
zakończony przez exit()

WIFSIGNALED(status) 1, gdy podproces został zakończony wskutek doręczenia

sygnału, 0 w przeciwnym przypadku

WTERMSIG(status) numer sygnału, który zakończył proces

WIFSTOPPED(status) 1, gdy podproces zatrzymano, bądź 0

WSTOPSIG(status) nr sygnału, który zatrzymał proces

L.J. Opalski, slajdy do wykładu „Systemy Operacyjne I”
16

Funkcje do nadzoru procesów – c.d.

pid_t waitpid(pid_t pid, int *pstatus. int options)

czeka na zakończony podproces:

pid == -1 => na dowolny podproces

pid < -1 => na dowolny podproces należący do grupy procesów pgid=-pid

pid == 0 => na dowolny podproces należący do tej samej grupy procesów

co proces wołający

pid > 0 => na podproces o PID==pid

Parametr options jest sumą logiczną 0 i jednej lub dwóch wartości:

WNOHANG – waitpid powraca natychmiast jeśli nie ma zakończonego potomka

WUNTRACED - waitpid powraca również, gdy któryś z potomków został

wstrzymany.

waitpid zwraca PID podprocesu, bądź –1 w przypadku błędu

L.J. Opalski, slajdy do wykładu „Systemy Operacyjne I”
17

Funkcje do nadzoru procesów – c.d.

void _exit(int status)

funkcja biblioteczna powodująca „bezzwłoczne zakończenie” procesu przez
wywołanie funkcji systemowej exit. Uwaga: otwarte pliki są zamykane bez
opróżniania buforów; procesy potomne są „adoptowane” przez proces init, a
proces macierzysty otrzymuje sygnał SIGCHLD.

void exit(int status)

funkcja biblioteczna wywołująca funkcję _exit po wywołaniu funkcji
zarejestrowanych przez atexit() (bądź on_exit()), po wypisaniu danych
wszystkich częściowo zapisanych buforów oraz po zamknięciu plików
tymczasowych utworzonych za pomocą tmpfile(). Jeśli kończony proces jest
liderem sesji terminalowej, to każdy pierwszoplanowy proces grupy procesów
związanych z tym terminalem dostaje sygnał SIGHUP; znika też dotychczasowy
związek terminala sterującego z sesją terminalową.

Wartość zmiennej status może być równa 0, EXIT_SUCCESS, EXIT_FAILURE,
albo inna wartość, przy czym tylko 8 najmniej znaczących bitów tej liczby (t.j.
status & 0377) będzie dostępne oczekującemu procesowi.

L.J. Opalski, slajdy do wykładu „Systemy Operacyjne I”
18

Funkcje do tworzenia/kończenia/nadzoru

procesów – c.d.

Funkcje biblioteczne związane z funkcją systemową exec

execlp(char *file,char *arg0,...,NULL) execvp(char *file,char **argv)

execl(char *path,char *arg0,...,NULL)
execv(char *path,

char **argv)

execle(char *path,char *arg0, ...,NULL,

char **envp)

execve(char *path,

char **argv, char **envp)

funkcja
systemowa
exec

utwórz

argv

utwórz

argv

utwórz

argv

zamień file na

path

dodaj envp

L.J. Opalski, slajdy do wykładu „Systemy Operacyjne I”
19

Modyfikacja praw dostępu procesów

▪ Funkcja fork nie zmienia identyfikatorów UID i GID procesu (rzeczywistych,
obowiązujących, ani zapamiętanych)

▪ Proces użytkownika o (obowiązującym) UID==0 może, za pomocą funkcji
setuid(), zmienić (rzeczywiste, obowiązujące oraz zapamiętane) UID (a za
pomocą setgid() GID) procesu na dowolne wartości zarejestrowane w
systemie.

▪ Wywołanie funkcji exec zazwyczaj zachowuje (rzeczywiste, obowiązujące i
zapamiętane) UID i GID wołającego procesu. Jeśli jednak ustawić bit setuid w i-
węźle pliku wykonywalnego, to obowiązującym identyfikatorem (effective user
identifier) i zapamiętanym (saved user identifier) procesu wykonującego ten plik
staje się identyfikator właściciela pliku, podczas gdy rzeczywisty identyfikator
użytkownika (real user identifier) pozostaje niezmienny. Podobnie bit setgid
zmienia obowiązujący i zapamiętany identyfikator grupy użytkownika
wykonującego program z tym atrybutem (na czas wykonywania programu). W
kodzie programu można przełączać identyfikator obowiązujący pomiędzy
identyfikatorami: rzeczywistym i zapamiętanym.

▪ Bity setuid/setgid nadają więc “zwykłym użytkownikom” prawa dostępu (np.
do plików) takie jakie mają właściciele programów, którzy te bity ustawili.

▪ Bity setuid i setgid dla niezbyt starannie napisanych programów mogą
zmniejszać bezpieczeństwo systemu.

L.J. Opalski, slajdy do wykładu „Systemy Operacyjne I”
20

Grupy procesów

▪ Grupa procesów to zbiór procesów współpracujących ze sobą przy

wykonywaniu wspólnych zadań. Proces dziedziczy przynależność do grupy

procesów po przodku, ale może też utworzyć nową grupę (stając się jej

przywódcą). Identyfikatorem grupy procesów jest PID przywódcy.

▪ Sesja – kolekcja grup procesów, utworzona dla realizacji sterowania zadaniami

(job control) przy pomocy terminala sterującego. Operacje: suspend/resume,

fg/bg, kontrola użycia terminala przez procesy. Każda grupa procesów należy do

jakiejś sesji. Przynależność procesu do sesji jest dziedziczona

▪ Grupy procesów są używane przez powłoki do nadzorowania pracy wielu zadań..

▪ Procesy pierwszoplanowe (foreground proces group) mają

nieograniczony dostęp do terminala sterującego sesji. Pozostałe procesy

(drugoplanowe, background) – nie.

▪ Sekwencje sterujące terminala mogą powodować przesłanie sygnałów do

procesów grupy pierwszoplanowej.

▪ Zadanie (job) – zbiór procesów jednego potoku powłoki (i ich potomstwo), które

są w tej samej grupie procesów. Zadanie dziedziczy terminal sterujący po

procesie – rodzica.

▪ .

L.J. Opalski, slajdy do wykładu „Systemy Operacyjne I”
21

Powłoka zgłoszeniowa klasycznego UNIXa

▪ Proces init tworzy proces potomny getty (czy t.p.) który staje się przywódcą
sesji, otwiera dostęp do terminala, oczekuje na nazwę rejestracyjną (login name)
użytkownika, po czym wywołuje program login z parametrem - nazwą użytkownika

▪ login pobiera hasło użytkownika, wyznacza skrót i porównuje go z wartością
pamiętaną w /etc/shadow (albo w innym miejscu systemu). Przy pomyślnym
porównaniu ustawia dla procesu identyfikator użytkownika (UID) i jego grupy (GID)
np. wg zawartości pliku /etc/passwd (albo NIS) oraz rozpoczyna sesję
terminalową przez wywołanie powłoki zgłoszeniowej (login shell) użytkownika
(określonej w /etc/passwd). Powłoka ta pozwala użytkownikowi na pracę
interakcyjną.

init

getty

exec

init

getty

exec

init

getty

exec

init, PID=1
fork

fork
fork

PID=pid1

PID=pid2

PID=pid3

login

/bin/sh

exec

exec

pid1, pid2, pid3 są
różne pomiędzy sobą i
różne od 1

...

