Basic POSIX signal concepts

Last modification date: 05.11.2018

Note: The material does not cover real-time signal
generation/delivery and thread-specific signal handling

L.J. Opalski, slides for Operating Systems courses

POSIX signal

Signal - a mechanism by which a process or thread may be notified
of, or affected by, an event occurring in the system. The term signal
IS also used to refer to the event itself.

Examples of such events:

" hardware exceptions : hardware faults, timer expiration, terminal
activity

" actions by processes: calls of kill () , alarm(), exiting child
process and other

Signals in API:
POSIX Header file Prefixes of APl symbols
extension
- <signal.h> sa_, uc_, SIG[A-Z], SIG_[A-Z]
XSl SS ,SV__

RTS si_, Sl _, sigev_, SIGEV _, sival _

2 L.J. Opalski, slides for Operating Systems courses

Important signals

Nr [Name Meaning Action

1 SIGHUP Hangup Exit

2 SIGINT tty interrupt (typically: ~C) Exit

9 SIGKILL Unconditional process termination Exit

11 SIGSEGV Segmentation Fault Core dump + exit

13 SIGPIPE Broken Pipe Exit

14 SIGALRM Alarm Clock Exit

15 SIGTERM Software interrupt Exit
SIGUSR1,2 Two ,user interrupts” (no pre-defining meaning) Exit
SIGCHLD Child Status Changed Ignore
SIGCONT Process to be continued Continue
SIGSTOP Unconditional stop for a process Stop
SIGTSTP Stop of a process via tty (typically: ~Z) Stop
SIGTTIN Stopped (tty input) Stop
SIGTTOU Stopped (tty output) Stop

L.J. Opalski, slides for Operating Systems courses

Programmatic signal generation

int kill(pid t pid, int sigq)

the function sends a signal number sig>0 .
= pid > 0 to a process with given PID

" pid == to all process that belong to the process group
of the sender (normally to all children and perhaps some ancestors)

" pid == -1 to all processes in the system (except init)

" pid < -1 to all processes that belong to the process group
pgid=-pid

If sig==0, no signal is sent, but normal error checking is performed.

The function returns normally 0 and —1 upon failure (the global
variable errno , defined in <errno.h> is set, to inform about the

reason of failure)

Note: there exists a system command of the same name and purpose

L.J. Opalski, slides for Operating Systems courses

Signal targets

POSIX: ,At the time of generation, a determination shall
be made whether the signal has been generated for the
process or for a specific thread within the process.

® Signals which are generated by some action
attributable to a particular thread, such as a hardware
fault, shall be generated for the thread that caused the
signal to be generated.

" Signals that are generated in association with a
process ID or process group ID or an asynchronous
event, such as terminal activity, shall be generated for
the process.”

Signals can thus be synchronously-generated or they are
asynchronous events

L.J. Opalski, slides for Operating Systems courses

Actions to be taken by the recipient

" Each process has always defined an action to be taken in response to
each signal defined by the system.

® Signal can be

= delivered - when the appropriate action for the process and signal
IS taken (ignoring or calling signal handlers - user defined or
default i.e. system defined).

= accepted - when the signal is selected and returned by one of the
sigwait () functions (signal was handled synchronously).

® Signal can also be blocked — postponing decision on delivery or
acceptance.

" Between the generation of a signal and its delivery or acceptance, the
signal is said to be pending.

L.J. Opalski, slides for Operating Systems courses

Blocking

Each process has a signal mask that defines the set of signals currently blocked
from delivery to it. The signal mask from a process is inherited from its parent.

sigset t mask — mask of signals.

Bits of the signal mask can be changed/tested:

int
int
int
int
int

sigemptyset (sigset t *set); //zeroes all mask bits
sigfillset(sigset t *set); // sets all mask bits
sigaddset(sigset t *set, int signo); //setsbitnr signo
sigdelset(sigset t *set, int signo); //clears bitnr signo
sigismember (sigset t *set, int signo); //tests bitnr signo

int sigprocmask (int how, const sigset t *set, sigset t *old)

The function modifies the set of blocked signals (if set!=NULL) and returns
previous mask (if o1d!=NULL). Parameter how:

SIG BLOCK - the specified signals will be blocked by process
SIG UNBLOCK - the specified signals will be unblocked

SIG

SETMASK - the specified mask becomes the process signal mask

int sigpending(int how, const sigset t *set)

Returns information on pending signals. sigismember (set,nr) call can be
used to determine if a signal of given nr is pending.

L.J. Opalski, slides for Operating Systems courses

Determination of the action to be taken

" The determination of which action is to be taken is made at the time
the signal is delivered, independently of the means by which the
signal was originally generated.

" POSIX: If a subsequent occurrence of a pending signal is generated,
it Is Implementation-defined as to whether the signal is delivered or
accepted more than once. UNIX: typically only one pending (non-
RT) signal is allowed.

" The order in which multiple, simultaneously pending (non-RT)
signals are delivered to or accepted by a process is unspecified.
Programmer can change signal mask to make a signal delivered or
use sigwait () call to have the signal accepted.

L.J. Opalski, slides for Operating Systems courses

Signal actions upon delivery

® Actions upon delivery
= ignore the signal; symbolically: SIG_IGN

= perform signal-specific default (system-handled) action (ignoring or
process termination with possible core dump, stopping process,
process continuation); symbolically: SIG DFL

= catch signal using a provided handler function pointer.
void handler name (int signo) ;
where signo is the signal number that caused invocation of the handler

" Initially all signals shall be setto SIG DFL or SIG IGN prior to entry to the
main () routine of the process.

L.J. Opalski, slides for Operating Systems courses

Programming asynchronous handling

int sigaction (// defines action upon signal delivery
int sig, /Il signal which handling is to be set
const struct sigaction *act, /I current disposition
struct sigaction *oact // old disposition

) ;

struct sigaction{ //the structure holding disposition
void (*sa handler) (int); // pointerto a signal handler
// or SIG_DFL, SIG_IGN
sigset t sa mask; // mask of blocked signals
int sa flags; /I flags that modify signal handling

}
Notes:

1. During signal handler execution the next occurrence of the same signal and
signals marked by respective sa_mask bits are blocked.

2 .if (sa_flags&SA RESTART) -> returning from a handler resumes the

interrupted ,long” library function (otherwise the function fails, setting
errno==EINTR)

10 L.J. Opalski, slides for Operating Systems courses

Remarks on signal handler

" The handler can recognize signal number that triggered its call because
of handler parameter, but not the signal origin.

" Currently handled signal is blocked for the time of the handler's
execution. Other signals can be blocked if necessary by setting process
signal mask.

® The handler blocks the execution of the main code, thus it must be as
short as possible. Time consuming functions (like sleep or blocking 1/0)
should not be used.

" The handler should interact with remaining code with global atomic
variables of type

volatile sig atomic t

11 L.J. Opalski, slides for Operating Systems courses

Correct asynchronous signal handling

volatile sig atomic_t usr interrupt; // interrupt-safe flag

void handler (int signr) { // signal handler
if (signr==SIGUSR1) usr interrupt++; // safely increment flag

int main (int argc, char *argv|[]) {
sigset t mask, oldmask;
struct sigaction sa;
sigemptyset (&mask) ;
sigaddset (&mask, SIGUSRI) ;
sigprocmask (SIG BLOCK, &mask, &oldmask); //block SIGUSRI1 saving old maskin
oldmask
memset (sa, 0, sizeof (struct sigaction)); Il preparation of struct sigaction

sa.sa_handler = handler; Il for new disposition
if (sigaction (SIGUSR1, &sa,NULL)) { // catching SIGUSR1 with handler
requested
// error handling
} else {
while (!usr interrupt) // check SIGUSR1 delivery flag
sigsuspend (&oldmask) ; // suspend process if not

sigprocmask (SIG UNBLOCK, &mask, NULL);/ retrieve old signal mask into oldmask

) 12 L.J. Opalski, slides for Operating Systems courses

Warning: incorrect use of global flags

#include <signal.h>
#include <stdio.h>

#include <unistd.h>
struct two words {

#ifdef LONG

long a, b;
#else

int a, b;
#endif

} mem; // global structure
L1777 0770007777777 7777777777777
void handler (int signum) {
// print-out the global structure
#ifdef LONG

printf ("%$1d, $1d\n",

#else
printf ("%d, $d\n",
#fendif

mem.a, mem.b);
// schedule next SIGALRM signal
alarm (1) ;

13

int main (void) {
struct sigaction sa;
static struct two words

zeros = { 0, 0 1},
ones = {1, 1};
mem = zZeros;

memset (sa, 0,sizeof (sa));
sa.sa_handler = handler;
if (sigaction (SIGUSRI1, &sa,NULL) {
alarm(1l);//schedule alarm
while (1){// spinning
mem = Zeros;
mem = ones;
}
return EXIT SUCCESS;
}
return EXIT FAILURE;

}
/[NOTE: for 64b architecture define _LONG,
I to see effects of non-atomic updates of

/I mem structure.

L.J. Opalski, slides for Operating Systems courses

Side-effects of asynchronous signal handling

If a signal is delivered during execution of some blocking (,,slow”, interruptible)
system functions, the functions are terminated prematurely with —1 return code
and with errno set to EINTR (unless sa flags&SA RESTART is setwhen

defining signal handling with sigaction())

Example. Implementation of 5 second time-out while copying standard input to
standard output.

void hand (int sig){ // Normally no long operations are performed in handlers
fprintf (stderr, "hand (%d) \n".signr); // This line is provided for
// (improper) demonstration of handler activity
return;
}
int main (int argc, char *argvl[]) {
char buf[20];
int n;
static struct sigaction sa; // Note: static variables are 0 initialized
sa.sa handler=hand;
//sa.sa flags=SA RESTART; // Activation of automatic restart. What if
uncommented. ?
if (sigaction (STGALRM, &sa,NULL)) return EXIT FAILURE 1;
alarm(5) ;
while ((n=read (0,buf, sizeof (buf)))>0) write (1,buf,n);//
fprintf (stderr, "n=%d, errno=%d\n",n,errno);
if (errno) perror ("readsig");
return 0;

L.J Olnnlcl(i, slides for Opprating QyQ'rme courses

14

Side-effects — cont.

Signal delivery affects also functions
which put a process asleep, e.g.
sleep() and nanosleep(). The
functions return prematurely after
signal is handled by a handler. To
sleep for a predefined amount of
type, despite signal handling, the
following tricks can be used.

For sleep function, typical construct is:

int tt, t = 5;// 5 second sleep

for(tt = t; tt > 0; tt = sleep(tt));
For nanosleep function
struct timespec tt, t = {5, 0};

for (tt=t;nanosleep (&tt, &tt) ;)
if (EINTR!=errno) {
perror ("nanosleep:");

In GNU programming environment the macro

TEMP_ FAILURE RETRY is defined.

Pattern of use:
#define GNU SOURCE
#include <unistd.h>

TEMP FAILURE RETRY (fun call)

while((n =

TEMP FAILURE RETRY (

read (0, buf,sizeof (buf))
)) >0)
write(l,buf,n);

The macro can be used to wait for blocking
system function call, ignoring intermediate
returns due to signal handling

15

L.J. Opalski, slides for Operating Systems courses

Handling SIGCHLD signal

How to eliminate zombies ? void SIGCHLD handler (int sig) {
1. Create sTccHLD handler & pid t pid;
for (;7) A
pid = waitpid (0, NULL, WNOHANG) ;
if (0 == pid) return;
if (0 >= pid)
if (ECHILD == errno) return;
perror ("waitpid:");
}
}
2. Activate the handler struct sigaction sa;

(sigaction () call) =

memset (sa,0,sizeof (struct sigaction));
3. Callwait() before exiting sa.sa_handler=SIGCHLD handler;

if (sigaction (SIGCHLD, &sa,NULL)) {
while (TEMP FAILURE RETRY (wait (NULL))>0) ; // error handling

16 L.J. Opalski, slides for Operating Systems courses

Async-signal-safe functions (POSIX Std 1003.1-2001)

_Exit chown fsync Iseek recvmsg sigdelset symlink uname
_exit clock_gettime | ftruncate Istat rename sigemptyset | sysconf unlink
abort close getegid mkdir rmdir sigfillset tcdrain utime
accept connect geteuid mkfifo select sigismember | tcflow wait
access creat getgid open sem_post | sleep tcflush waitpid
aio_error dup getgroups pathconf send signal tcgetattr write
aio_return dup2 getpeername pause sendmsg sigpause tcgetpgrp
aio_suspend | execle getpgrp pipe sendto sigpending tcsendbreak
alarm execve getpid poll setgid sigprocmask | tcsetattr
bind fchmod getppid posix_trac | setpgid sigqueue tcsetpgrp

e_event
cfgetispeed fchown getsockname pselect setsid sigset time
cfgetospeed | fentl getsockopt raise setsockopt | sigsuspend timer_getoverrun
cfsetispeed fdatasync getuid read setuid sockatmark timer_gettime
cfsetospeed | fork kill readlink shutdown socket timer_settime
chdir fpathconf link recv sigaction socketpair Times
chmod fstat listen recvfrom sigaddset stat umask

All async-signal-safe functions shall behave as defined when called from or interrupted by a signal-
catching function. When a signal interrupts an unsafe function or the signal-catching function calls an

unsafe function, the behavior is undefined.

17

L.J. Opalski, slides for Operating Systems courses

Synchronous signal handling

int sigsuspend(const sigset t *mask); - waiting for delivery of
signals other than specified with the mask (which are temporarily blocked)

int sigwait(const sigset t *mask, int *signr); - a blocked
signal, specified with the mask, signal is removed from the list of blocked
signals and its number returned via *signr.

int pause (void); - blocks the calling process until any signal is delivered
to the process (i.e. signal is properly handled by a signal handler).

sigset t mask, oldmask;
int signr;
sigemptyset (&mask) ;
sigaddset (&mask, SIGUSR1) ;
sigprocmask (SIG BLOCK, &mask, &oldmask); // block SIGUSRI, saving
// old signal mask in oldmask
while (! sigwait (&mask, &signr) {// retrieve pending signal nrinto signr
Cee // handle the sighal number signr
printf (”“signal nr %d accepted\n”,signr);

}

Note: sigwait () is blocking if there is no pending signal, suspending execution of
the caller.

18 L.J. Opalski, slides for Operating Systems courses

Terminal generated signals

stty utility shall set or report on terminal I/O characteristics for the device
that is its standard input. Example use cases:

" stty —a Writes to standard output all the current settings for the terminal.
" stty operands Sets terminal 1/O characteristics, e.g.:
sane Reset all modes to some reasonable, unspecified, values.
tostop (-tostop) Send SIGTTOU for background output.

<control> Sets <control> to

Typically:

______[Charsiing [Meaning

intr "C SIGINT generation
quit A\ SIGQUIT generation
susp N SIGTSTP generation

19 L.J. Opalski, slides for Operating Systems courses

