
L.J. Opalski, slides for Operating Systems courses
1

Note: The material does not cover real-time signal

generation/delivery and thread-specific signal handling

Basic POSIX signal concepts

Last modification date: 05.11.2018

L.J. Opalski, slides for Operating Systems courses
2

POSIX signal

Signal - a mechanism by which a process or thread may be notified

of, or affected by, an event occurring in the system. The term signal

is also used to refer to the event itself.

Examples of such events:

▪ hardware exceptions : hardware faults, timer expiration, terminal

activity

▪ actions by processes: calls of kill(), alarm(), exiting child

process and other

Signals in API:

POSIX

extension

Header file Prefixes of API symbols

-

XSI

RTS

<signal.h> sa_, uc_, SIG[A-Z], SIG_[A-Z]

ss_, sv_

si_, SI_, sigev_, SIGEV_, sival_

L.J. Opalski, slides for Operating Systems courses
3

Important signals

Nr Name Meaning Action

1 SIGHUP Hangup Exit

2 SIGINT tty interrupt (typically: ^C) Exit

9 SIGKILL Unconditional process termination Exit

11 SIGSEGV Segmentation Fault Core dump + exit

13 SIGPIPE Broken Pipe Exit

14 SIGALRM Alarm Clock Exit

15 SIGTERM Software interrupt Exit

SIGUSR1,2 Two „user interrupts” (no pre-defining meaning) Exit

SIGCHLD Child Status Changed Ignore

SIGCONT Process to be continued Continue

SIGSTOP Unconditional stop for a process Stop

SIGTSTP Stop of a process via tty (typically: ^Z) Stop

SIGTTIN Stopped (tty input) Stop

SIGTTOU Stopped (tty output) Stop

L.J. Opalski, slides for Operating Systems courses
4

Programmatic signal generation

int kill(pid_t pid, int sig)

the function sends a signal number sig>0 .

▪ pid > 0 to a process with given PID

▪ pid == 0 to all process that belong to the process group

of the sender (normally to all children and perhaps some ancestors)

▪ pid == -1 to all processes in the system (except init)

▪ pid < - 1 to all processes that belong to the process group

pgid=-pid

If sig==0, no signal is sent, but normal error checking is performed.

The function returns normally 0 and –1 upon failure (the global
variable errno , defined in <errno.h> is set, to inform about the

reason of failure)

Note: there exists a system command of the same name and purpose

L.J. Opalski, slides for Operating Systems courses
5

Signal targets

POSIX: „At the time of generation, a determination shall

be made whether the signal has been generated for the

process or for a specific thread within the process.

▪ Signals which are generated by some action

attributable to a particular thread, such as a hardware

fault, shall be generated for the thread that caused the

signal to be generated.

▪Signals that are generated in association with a

process ID or process group ID or an asynchronous

event, such as terminal activity, shall be generated for

the process.”

Signals can thus be synchronously-generated or they are

asynchronous events

L.J. Opalski, slides for Operating Systems courses
6

Actions to be taken by the recipient

▪ Each process has always defined an action to be taken in response to

each signal defined by the system.

▪ Signal can be

▪ delivered - when the appropriate action for the process and signal

is taken (ignoring or calling signal handlers - user defined or

default i.e. system defined).

▪ accepted - when the signal is selected and returned by one of the
sigwait() functions (signal was handled synchronously).

▪ Signal can also be blocked – postponing decision on delivery or

acceptance.

▪ Between the generation of a signal and its delivery or acceptance, the

signal is said to be pending.

L.J. Opalski, slides for Operating Systems courses
7

Blocking

▪ Each process has a signal mask that defines the set of signals currently blocked
from delivery to it. The signal mask from a process is inherited from its parent.

▪ sigset_t mask – mask of signals.

▪ Bits of the signal mask can be changed/tested:

int sigemptyset(sigset_t *set); // zeroes all mask bits

int sigfillset(sigset_t *set); // sets all mask bits

int sigaddset(sigset_t *set, int signo); // sets bit nr signo

int sigdelset(sigset_t *set, int signo); // clears bit nr signo

int sigismember(sigset_t *set, int signo); // tests bit nr signo

▪ int sigprocmask(int how, const sigset_t *set, sigset_t *old)

The function modifies the set of blocked signals (if set!=NULL) and returns
previous mask (if old!=NULL). Parameter how:

SIG_BLOCK - the specified signals will be blocked by process

SIG_UNBLOCK - the specified signals will be unblocked

SIG_SETMASK - the specified mask becomes the process signal mask

▪ int sigpending(int how, const sigset_t *set)

Returns information on pending signals. sigismember(set,nr) call can be
used to determine if a signal of given nr is pending.

L.J. Opalski, slides for Operating Systems courses
8

Determination of the action to be taken

▪ The determination of which action is to be taken is made at the time

the signal is delivered, independently of the means by which the

signal was originally generated.

▪ POSIX: If a subsequent occurrence of a pending signal is generated,

it is implementation-defined as to whether the signal is delivered or

accepted more than once. UNIX: typically only one pending (non-

RT) signal is allowed.

▪ The order in which multiple, simultaneously pending (non-RT)

signals are delivered to or accepted by a process is unspecified.

Programmer can change signal mask to make a signal delivered or
use sigwait() call to have the signal accepted.

L.J. Opalski, slides for Operating Systems courses
9

Signal actions upon delivery

▪ Actions upon delivery

▪ ignore the signal; symbolically: SIG_IGN

▪ perform signal-specific default (system-handled) action (ignoring or

process termination with possible core dump, stopping process,
process continuation); symbolically: SIG_DFL

▪ catch signal using a provided handler function pointer.

void handler_name(int signo);

where signo is the signal number that caused invocation of the handler

▪ Initially all signals shall be set to SIG_DFL or SIG_IGN prior to entry to the

main() routine of the process.

L.J. Opalski, slides for Operating Systems courses
10

Programming asynchronous handling

int sigaction (// defines action upon signal delivery

int sig, // signal which handling is to be set

const struct sigaction *act, // current disposition

struct sigaction *oact // old disposition

);

struct sigaction{ // the structure holding disposition

void(*sa_handler)(int); // pointer to a signal handler

// or SIG_DFL, SIG_IGN

sigset_t sa_mask; // mask of blocked signals

int sa_flags; // flags that modify signal handling

}

Notes:

1. During signal handler execution the next occurrence of the same signal and
signals marked by respective sa_mask bits are blocked.

2.if(sa_flags&SA_RESTART) → returning from a handler resumes the

interrupted „long” library function (otherwise the function fails, setting
errno==EINTR)

L.J. Opalski, slides for Operating Systems courses
11

Remarks on signal handler

▪ The handler can recognize signal number that triggered its call because

of handler parameter, but not the signal origin.

▪ Currently handled signal is blocked for the time of the handler's

execution. Other signals can be blocked if necessary by setting process

signal mask.

▪ The handler blocks the execution of the main code, thus it must be as

short as possible. Time consuming functions (like sleep or blocking I/O)

should not be used.

▪ The handler should interact with remaining code with global atomic

variables of type

volatile sig_atomic_t

L.J. Opalski, slides for Operating Systems courses
12

Correct asynchronous signal handling

volatile sig_atomic_t usr_interrupt; // interrupt-safe flag

void handler(int signr){ // signal handler

if(signr==SIGUSR1) usr_interrupt++; // safely increment flag

}

int main(int argc, char *argv[]){

sigset_t mask, oldmask;

struct sigaction sa;

......................

sigemptyset(&mask);

sigaddset(&mask, SIGUSR1);

sigprocmask(SIG_BLOCK, &mask, &oldmask); // block SIGUSR1 saving old mask in

oldmask
memset(sa,0,sizeof(struct sigaction)); // preparation of struct sigaction

sa.sa_handler = handler; // for new disposition
if(sigaction(SIGUSR1,&sa,NULL)){ // catching SIGUSR1 with handler

requested

. . . // error handling

} else {

while(!usr_interrupt) // check SIGUSR1 delivery flag

sigsuspend(&oldmask); // suspend process if not

. . .

sigprocmask(SIG_UNBLOCK, &mask, NULL);// retrieve old signal mask into oldmask
}

......................

}

L.J. Opalski, slides for Operating Systems courses
13

Warning: incorrect use of global flags

#include <signal.h>

#include <stdio.h>

#include <unistd.h>

struct two_words {

#ifdef _LONG

long a, b;

#else

int a, b;

#endif

} mem; // global structure

////////////////////////////////

void handler(int signum){

// print-out the global structure

#ifdef _LONG

printf("%ld,%ld\n",

#else

printf("%d,%d\n",

#endif

mem.a, mem.b);

// schedule next SIGALRM signal

alarm(1);

}

int main(void){

struct sigaction sa;

static struct two_words

zeros = { 0, 0 },

ones = {1, 1};

mem = zeros;

memset(sa,0,sizeof(sa));

sa.sa_handler = handler;

if(sigaction(SIGUSR1,&sa,NULL){

alarm(1);//schedule alarm

while (1){// spinning

mem = zeros;

mem = ones;

}

return EXIT_SUCCESS;

}

return EXIT_FAILURE;

}

// NOTE: for 64b architecture define _LONG,

// to see effects of non-atomic updates of

// mem structure.

L.J. Opalski, slides for Operating Systems courses
14

Side-effects of asynchronous signal handling

If a signal is delivered during execution of some blocking („slow”, interruptible)

system functions, the functions are terminated prematurely with –1 return code
and with errno set to EINTR (unless sa_flags&SA_RESTART is set when

defining signal handling with sigaction())

Example. Implementation of 5 second time-out while copying standard input to

standard output.

void hand(int sig){ // Normally no long operations are performed in handlers

fprintf(stderr,"hand(%d)\n".signr); // This line is provided for

// (improper) demonstration of handler activity

return;

}

int main(int argc, char *argv[]){

char buf[20];

int n;

static struct sigaction sa; // Note: static variables are 0 initialized

sa.sa_handler=hand;

//sa.sa_flags=SA_RESTART; // Activation of automatic restart. What if

uncommented.?

if(sigaction(SIGALRM,&sa,NULL)) return EXIT_FAILURE 1;

alarm(5);

while((n=read(0,buf,sizeof(buf)))>0) write(1,buf,n);//

fprintf(stderr,"n=%d, errno=%d\n",n,errno);

if(errno) perror("readsig");

return 0;

}

L.J. Opalski, slides for Operating Systems courses
15

Side-effects – cont.

Signal delivery affects also functions

which put a process asleep, e.g.
sleep() and nanosleep(). The

functions return prematurely after

signal is handled by a handler. To

sleep for a predefined amount of

type, despite signal handling, the

following tricks can be used.

For sleep function, typical construct is:

int tt, t = 5;// 5 second sleep

for(tt = t; tt > 0; tt = sleep(tt));

For nanosleep function
struct timespec tt, t = {5, 0};

for(tt=t;nanosleep(&tt,&tt);)

if(EINTR!=errno) {

perror("nanosleep:");

...

}

In GNU programming environment the macro
TEMP_FAILURE_RETRY is defined.

Pattern of use:
#define _GNU_SOURCE

#include <unistd.h>

...

TEMP_FAILURE_RETRY(fun_call)

The macro can be used to wait for blocking

system function call, ignoring intermediate

returns due to signal handling

while((n = TEMP_FAILURE_RETRY(

read(0,buf,sizeof(buf))

)) >0)

write(1,buf,n);

L.J. Opalski, slides for Operating Systems courses
16

Handling SIGCHLD signal

How to eliminate zombies ?

1. Create SIGCHLD handler ➔

2. Activate the handler
(sigaction() call) ➔

3. Call wait() before exiting

void SIGCHLD_handler(int sig){

pid_t pid;

for (;;) {

pid = waitpid(0, NULL, WNOHANG);

if (0 == pid) return;

if (0 >= pid) {

if (ECHILD == errno) return;

perror("waitpid:");

}

}

struct sigaction sa;

memset(sa,0,sizeof(struct sigaction));

sa.sa_handler=SIGCHLD_handler;

if(sigaction(SIGCHLD,&sa,NULL)) {

// error handling

}

while (TEMP_FAILURE_RETRY(wait(NULL))>0);

L.J. Opalski, slides for Operating Systems courses
17

Async-signal-safe functions (POSIX Std 1003.1-2001)

All async-signal-safe functions shall behave as defined when called from or interrupted by a signal-

catching function. When a signal interrupts an unsafe function or the signal-catching function calls an

unsafe function, the behavior is undefined.

_Exit chown fsync lseek recvmsg sigdelset symlink uname

_exit clock_gettime ftruncate lstat rename sigemptyset sysconf unlink

abort close getegid mkdir rmdir sigfillset tcdrain utime

accept connect geteuid mkfifo select sigismember tcflow wait

access creat getgid open sem_post sleep tcflush waitpid

aio_error dup getgroups pathconf send signal tcgetattr write

aio_return dup2 getpeername pause sendmsg sigpause tcgetpgrp

aio_suspend execle getpgrp pipe sendto sigpending tcsendbreak

alarm execve getpid poll setgid sigprocmask tcsetattr

bind fchmod getppid posix_trac

e_event

setpgid sigqueue tcsetpgrp

cfgetispeed fchown getsockname pselect setsid sigset time

cfgetospeed fcntl getsockopt raise setsockopt sigsuspend timer_getoverrun

cfsetispeed fdatasync getuid read setuid sockatmark timer_gettime

cfsetospeed fork kill readlink shutdown socket timer_settime

chdir fpathconf link recv sigaction socketpair Times

chmod fstat listen recvfrom sigaddset stat umask

L.J. Opalski, slides for Operating Systems courses
18

Synchronous signal handling
int sigsuspend(const sigset_t *mask); – waiting for delivery of
signals other than specified with the mask (which are temporarily blocked)

int sigwait(const sigset_t *mask, int *signr); – a blocked
signal, specified with the mask, signal is removed from the list of blocked
signals and its number returned via *signr.

int pause(void); - blocks the calling process until any signal is delivered
to the process (i.e. signal is properly handled by a signal handler).

sigset_t mask, oldmask;

int signr;

sigemptyset(&mask);

sigaddset(&mask, SIGUSR1);

sigprocmask(SIG_BLOCK, &mask, &oldmask); // block SIGUSR1, saving

// old signal mask in oldmask

while(! sigwait(&mask,&signr){// retrieve pending signal nr into signr

. // handle the signal number signr

printf(”signal nr %d accepted\n”,signr);

}

Note: sigwait() is blocking if there is no pending signal, suspending execution of

the caller.

L.J. Opalski, slides for Operating Systems courses
19

Terminal generated signals

stty utility shall set or report on terminal I/O characteristics for the device

that is its standard input. Example use cases:

▪ stty –a Writes to standard output all the current settings for the terminal.

▪ stty operands Sets terminal I/O characteristics, e.g.:

sane Reset all modes to some reasonable, unspecified, values.

tostop (−tostop) Send SIGTTOU for background output.

<control> string Sets <control> to string.

Typically:

control Char. string Meaning

intr ^C SIGINT generation

quit ^\ SIGQUIT generation

susp ^Z SIGTSTP generation

