
Slajdy do wykładu „Systemy operacyjne 2”

Mechanizmy POSIX IPC

▪ Trwałość obiektów POSIX IPC to tzw. trwałość jądra za wyjątkiem semafora w

pamięci, który ma trwałość procesu (proces persistence) – obiekt istnieje tak

długo jak jest dostępna procesom pamięć w której przebywa, chyba że zostanie

wcześniej jawnie zniszczony (sem_destroy())

Kolejki

komunikatów

Pamięć

wspólna

Semafory

Plik nagłówkowy <mqueue.h> <sys/mman.h> <semaphore.h>

Tworzenie/

otwieranie/usuwanie

mq_open(),

mq_close(),

mq_unlink()

shm_open(),

shm_unlink()

sem_open()

sem_close(),

sem_unlink(),

sem_init(),

sem_destroy()

Operacje sterujące mq_getattr(),

mq_setattr()

ftruncate(),

fstat()

Operacje komunikacji mq_send()

mq_receive(),

mq_notify()

mmap()

munmap()

sem_wait(),

sem_trywait(),

sem_post(),

sem_getvalue()

Slajdy do wykładu „Systemy operacyjne 2”

Semafory nazwane POSIX – przestrzenie

nazw i identyfikatorów
▪ Nazwane semafory POSIX są związane z nazwą (argument name wywołania

funkcji sem_open()).

▪ POSIX nie wymaga, by nazwa była widoczna w systemie plików czy była

dostępna dla funkcji systemowych korzystających z nazw ścieżkowych.

▪ Parametr name musi spełniać wymagania nazwy ścieżkowej (pathname).

• Jeśli name rozpoczyna znak ‚/’, to każdy proces wywołujący

sem_open() z taką nazwą wskazuje na ten sam semafor – póki nie

zostanie usunięty z systemu,

• Jeśli name nie rozpoczyna znak ‚/’ – konsekwencje zależą od

implementacji.

• Konsekwencje wielokrotnego wystąpienia w nazwie znaku ‚/’ zależą

od implementacji.

▪ Linux wymaga nazw postaci /somename (nie dłuższych niż {NAMELEN-4}

bajtów). Semafory nazwane przechowywane są w wirtualnym systemie plików,

normalnie montowanym pod /dev/shm, przy czym nazwy mają postać

sem.somename.

▪ Dokumentacja Linux semaforów POSIX: sem_overview(7)

Slajdy do wykładu „Systemy operacyjne 2”

Semafory nazwane – tworzenie, otwieranie

sem_t *sem_open(const char *name, int oflag

/* , mode_t mode, unsigned int value */);

Funkcja zwraca wskaźnik na strukturę semafora; w przypadku błędu zwraca

(sem_t)(SEM_FAILED), po ustawieniu kodu błędu w errno .

Parametry:

name - nazwa semafora.

oflag - określa tryb dostępu (O_RDONLY, O_WRONLY, O_RDWR,

O_CREAT, O_EXCL). Jeżeli tworzony jest nowy semafor wymagane

są dwa dodatkowe parametry wywołania:

mode - prawa dostępu (r i w – jak dla plików)

value - początkowa wartość semafora

Uwagi:

• Wywołanie sem_open() jest przerywane przez asynchroniczną obsługę

sygnału w procesie wywołującym sem_open() .

• Maks. liczba semaforów: {SEM_NSEM_MAX} (>=256), maks. Wartość

semafora: {SEM_VALUE_MAX} (>=32767), patrz <unistd.h>

Slajdy do wykładu „Systemy operacyjne 2”

Odłączenie/usunięcie semafora

▪ Jeśli proces nie potrzebuje dostępu do semafora powinien go zamknąć:

int sem_close(sem_t *sem);

▪ Semafor o danej nazwie (name) można zaznaczyć do usunięcia: :

int sem_unlink(char *name);

Uwaga: Funkcja usuwa natychmiast jedynie nazwę semafora z systemu,

ale semafor jest naprawdę usunięty, gdy zostanie odłączony (przez

wywołanie sem_close ()) przez wszystkie procesy, które go wcześniej

dołączyły.

Slajdy do wykładu „Systemy operacyjne 2”

Operacje czekaj i sygnalizuj

▪ Blokujące i nieblokujące wykonanie operacji czekaj wait :

int sem_wait(sem_t * sem);

int sem_trywait(sem_t * sem);

▪ Wykonanie operacji sygnalizuj:

int sem_post(sem_t * sem);

▪ Aktualną wartość semafora można uzyskać przez wywołanie :

int sem_getvalue(sem_t * sem, int *valp);

Slajdy do wykładu „Systemy operacyjne 2”

Nienazwane semafory POSIX
▪ Nienazwane semafory są przechowywane w strukturze sem_t , dostęp do tej

struktury musi być zorganizowany przez współpracujące wątki czy procesy.

Inicjacja struktury z nadaniem wartości początkowej value :

int sem_init(sem_t * sem, int shared,

unsigned int value);

Jeśli shared==0 – to semafor jest współdzielony przez wątki jednego

procesu; w przeciwnym przypadku jest współużytkowany przez

procesy..

▪ Usunięcie semafora przechowywanego w strukturze danych wskazywanej

przez sem :

int sem_destroy(sem_t * sem);

Wykorzystywanie usuniętego semafora ma nieokreślone skutki – aż

do ponownej inicjalizacji przez sem_init(…) .

▪ Operacje semaforowe (wait/post) wykonywane są przez te same funkcje

(sem_wait() and sem_post()) , które są używane dla semaforów

nazwanych.

Slajdy do wykładu „Systemy operacyjne 2”

Inne obiekty synchronizacji POSIX

▪ Muteks/zamek (mutex)

▪ Zmienna warunku (Condition variable)

▪ Bariera (barrier)

▪ Zamek czytelników-pisarza/odczytu-zapisu (Read-Write Lock)

Slajdy do wykładu „Systemy operacyjne 2”

Inne obiekty synchronizacji POSIX: muteks

▪ Muteks (zamek). Obiekt synchronizacji, który umożliwia wykluczenie dostępu

do sekcji krytycznej. Wątek, który zajął muteks staje się jego czasowym

właścicielem. Tylko wątek-właściciel może zwolnić muteks – przez co inny wątek

może muteks zająć.

▪ Podstawowe operacje:

▪ Zajęcje muteksu (zablokowanie dostępu do sekcji krytycznej dla innych)

int pthread_mutex_lock(pthread_mutex_t ∗mp);// blocking

int pthread_mutex_trylock(pthread_mutex_t ∗mp);// non-bl.

▪ Zwolnienie muteksu (odblokowanie dostępu do sekcji krytycznej)

int pthread_mutex_unlock(pthread_mutex_t ∗mp);

Sposób użycia muteksu:

lock

// sekcja krytyczna: kod, który powinien mieć wyłączny dostęp

// do współdzielonych danych
unlock

Slajdy do wykładu „Systemy operacyjne 2”

Tworzenie i inicjacja muteksu

▪ Tworzenie muteksu o domyślnych atrybutach

pthread_mutex_t mutex=PTHREAD_MUTEX_INITIALIZER;

▪ Nadawanie muteksów początkowych atrybutów

int pthread_mutex_init (

pthread_mutex_t ∗mp,// ptr to mutex

const pthread_mutexattr_t ∗mattr);// ptr to attributes

▪ Niszczenie muteksu

int pthread_mutex_destroy(pthread_mutex_t *mutex);

Slajdy do wykładu „Systemy operacyjne 2”

Atrybuty muteksu

▪ Domyślna inicjacja struktury atrybutów muteksu

int pthread_mutexattr_init(pthread_mutexattr_t ∗mattr);

Informacja o odczycie/modyfikacji atrybutów: man pthread_mutexattr_destroy

Liczba atrybutów zależy od implementacji.

Niektóre atrybuty muteksów w systemie Linux (non-RT):

pshared muteks może (albo nie może) być współdzielony przez procesy

type : NORMAL muteks nie wykrywa blokady (deadlock) kiedy wątek próbuje

zająć zajęty muteks
ERRORCHECK muteks sprawdzający poprawność użycia

RECURSIVE możliwe jest wielokrotne zajmowanie tego samego muteksu

przez jeden wątek, ale wymaga to wielokrotnego
odblokowowywania – by muteks stał się wolny

▪ Niszczenie (unieważnianie) struktury atrybutów

int pthread_mutexattr_destroy(pthread_mutexattr_t ∗mattr);

Slajdy do wykładu „Systemy operacyjne 2”

Robust mutex

▪ Muteksy POSIX mogą mieć atrybut robustness (patrz

pthread_mutexattr_setrobust(3)). Atrybut ten określa zachowanie funkcji

obsługujących muteks, gdy zakończy się wątek, który nie zwolnił zajętego przez

siebie muteksu.

▪ Jeśli muteks został inicjowany przez atrybut PTHREAD_MUTEX_ROBUST, a

później wątek, który zajął ten muteks (stając się jego przejściowym „właścicielem”)

zakończył się bez zwolnienia tego muteksu, to wszystkie następne próby

wykonania funkcji pthread_mutex_lock() dla tego muteksu zawiodą, zwracając

kod EOWNERDEAD, by zwrócić uwagę na to że wątek jest w stanie niespójnym

(zajęty muteks ma nieistniejącego właściciela). Zwykle w tej sytuacji kandydat na

właściciela powinien wywołać funkcję pthread_mutex_consistent() na muteksie,

by naprawić jego stan – przed próbą wykonania jakiejkolwiek innej operacji.

▪ Jeśli kandydat na następnego właściciela spróbuje jednak zwolnić muteks przy

pomocy wywołania funkcji pthread_mutex_unlock() - zanim naprawi jego stan –

muteks stanie się trwale nieużyteczny („popsuty”). Wszystkie następne próby jego

zajęcia przy pomocy wywołania pthread_mutex_lock() zawiodą z kodem błędu

ENOTRECOVERABLE. Jedyna dozwolona (mogąca się wykonać poprawnie)

operacja, to wywołanie dla popsutego muteksu funkcji pthread_mutex_destroy().

Slajdy do wykładu „Systemy operacyjne 2”

Zmienna warunku

▪ Zmienna warunku – Obiekt synchronizacji, który pozwala wątkowi zawiesić

wielokrotnie wykonanie, dopóki warunek związany ze zmienną stanie się

prawdziwy. Wątek zawieszony w ten sposób nazywany jest zablokowanym

przez zmienną warunku.”

▪ Tworzenie zmiennej warunku (CV) z domyślną inicjalizacją:

pthread_cond_t cond=PTHREAD_COND_INITIALIZER;

▪ Inicjalizacja CV:

int pthread_cond_init (

pthread_cond_t ∗cond, // ptr to CV

const pthread_condattr_t ∗mattr); // ptr to attributes

▪ Niszczenie CV

int pthread_cond_destroy(pthread_cond_t *cond);

Slajdy do wykładu „Systemy operacyjne 2”

Zmienna warunku

▪ Zmienna warunku zawsze współpracuje z muteksem.

int pthread_cond_wait (pthread_cond_t ∗cv ,
pthread_mutex_t ∗mutex) ;

Wywołanie pthread_cond_wait() nierozdzielnie (atomowo):

▪ zwalnia mutex oraz

▪ rozpoczyna blokowanie wątku na zmiennej warunku poniższych.

Po pomyślnym powrocie z funkcji pthread_cond_wait() muteks jest ponownie zajęty

przez wątek wywołujący.

▪ Wywołanie poniższych funkcji powoduje odblokowanie wątków zablokowanych na

zmiennej warunku cond
int pthread_cond_broadcast(pthread_cond_t * cond); /* all */

int pthread_cond_signal(pthread_cond_t * cond); /* >= 1 */

Jeżeli aktualnie nie ma wątków zablokowanych na zmiennej warunku – powiadomienie
o odblokowaniu nie powoduje żadnych skutków (teraz i w przyszłości).

Schemat użycia cv+mutex

pthread_cond_t cv=PTHREAD_COND_INITIALIZER;

pthread_mutex_t mutex ;

volatile sig_atomic_t condition_is_false =1;

pthread_mutex_lock (&mutex) ;

while (condition_is_false) {/* sprawdzenie warunku */

int ret = pthread_cond_wait (&cv , &mutex) ;

if (ret) { /∗ error ∗/ }
}

. . . /* główna część kodu sekcji krytycznej,

wykonywana pod ochroną mutex-u */

pthread_mutex_unlock (&mutex) ;

. . .

pthread_mutex_lock (&mutex) ;

condition_is_false =0; /* zmiana warunku

pod ochroną mutex-u */

pthread_cond_signal (&cv);/* sygnalizacja */

pthread_mutex_unlock (&mutex) ;

. . .

Slajdy do wykładu „Systemy operacyjne 2”

Przykład: „Hello world” z CV

pthread_mutex_t prt_lock = PTHREAD_MUTEX_INITIALIZER;

pthread_cond_t prt_cv = PTHREAD_COND_INITIALIZER;

int prt = 0;

void *hello_thread(void *arg){

pthread_mutex_lock(&prt_lock);

printf("hello ");

prt = 1;

pthread_cond_signal(&prt_cv);

pthread_mutex_unlock(&prt_lock);

return (NULL);

}

void *world_thread(void *arg){

pthread_mutex_lock(&prt_lock);

while (prt == 0)

pthread_cond_wait(&prt_cv, &prt_lock);

printf("world");

pthread_mutex_unlock(&prt_lock);

pthread_exit(0);

}

Slajdy do wykładu „Systemy operacyjne 2”

Przykład: „Hello world” z CV – c.d.

int main(int argc, char *argv[]){

int n;

pthread_attr_t attr;

pthread_t tid;

pthread_attr_init(&attr);

pthread_attr_setdetachstate(&attr,PTHREAD_CREATE_DETACHED);

if ((n = pthread_create(&tid, &attr, world_thread, NULL)) > 0){

fprintf(stderr, "pthread_create: %s\n",

strerror(n)); exit(1);

}

pthread_attr_destroy(&attr);

if ((n = pthread_create(&tid, NULL, hello_thread, NULL)) > 0) {

fprintf(stderr, "pthread_create: %s\n",

strerror(n)); exit(1);

}

if ((n = pthread_join(tid, NULL)) > 0) {

fprintf(stderr, "pthread_join: %s\n", strerror(n));

exit(1);

}

printf("\n");

return (0);

}

Slajdy do wykładu „Systemy operacyjne 2”

Inne obiekty synchronizacji POSIX
▪ Bariera – Obiekt synchronizacji, który pozwala zablokować pewną liczbę wątków

w funkcji pthread_barier_wait () . Funkcja

int pthread_barrier_wait(pthread_barrier_t *barrier);

przestaje blokować, gdy określona liczba wątków dotrze do blokady. Jeden z

oczekujących wątków otrzymuje z funkcji wartość niezerową

(PTHREAD_BARRIER_SERIAL_THREAD), a pozostałe: 0, po czym bariera

zostaje ustawiona w stan początkowy (taki jak bezpośrednio po wywołaniu funkcji

inicjacji: pthread_barrier_init()). Funkcja pthread_barrier_destroy() niszczy

barierę. Patrz man: thread_barrier_destroy(3P), thread_barrier_wait(3P)

▪ Zamek czytelników-pisarza/odczytu-zapisu (Multiple readers, single writer

locks) umożliwia wielu wątkom na jednoczesny dostęp do współdzielonej danej

w trybie odczytu oraz wyłączny dostęp jednemu wątkowi w trybie zapisu. Wątki

mogą należeć do jednego procesu, bądź różnych procesów. Ważne jest, by

struktura reprezentująca zamek była dla wszystkich współpracujących wątków

dostępna w trybie R/W. Patrz: man pthread_rwlock_rdlock,

pthread_rwlock_wrlock, pthread_rwlock_unlock

