Mechanizmy POSIX IPC

Kolejki Pamiec Semafory
komunikatéw | wspélna

Plik nagtéwkowy <mqgueue.h> <sys/mman.h> <semaphore.h>
Tworzenie/ mq_open(), shm_open(), sem_open()
otwieranie/usuwanie mq_close(), shm_unlink() sem_close(),
mq_unlink() sem_unlink(),
sem_init(),
sem_destroy()
Operacje sterujgce mq_getattr(), ftruncate(),
mq_setattr() fstat()
Operacje komunikacji mq_send() mmap() sem_wait(),
mq_receive(), munmap() sem_trywait(),
mq_notify() sem_post(),

sem_getvalue()

" Trwatosc obiektow POSIX IPC to tzw. trwatos¢ jadra za wyjatkiem semafora w
pamieci, ktory ma trwatosc¢ procesu (proces persistence) — obiekt istnieje tak
dtugo jak jest dostepna procesom pamiec¢ w ktorej przebywa, chyba ze zostanie
wczesniej jawnie zniszczony (sem_destroy())

Slajdy do wyktadu ,Systemy operacyjne 2”

Semafory nazwane POSIX — przestrzenie
nazw i identyfikatorow

" Nazwane semafory POSIX sg zwigzane z nazwg (argument name wywotania
funkcji sem_open()).
= POSIX nie wymaga, by nazwa byta widoczna w systemie plikow czy byta
dostepna dla funkcji systemowych korzystajgcych z nazw sciezkowych.

= Parametr name musi spetnia¢ wymagania nazwy sciezkowej (pathname).

- Jesli name rozpoczyna znak ,/’, to kazdy proces wywotujgcy
sem_open() z takg nazwg wskazuje na ten sam semafor — poki nie
zostanie usuniety z systemu,

- Jesli name nie rozpoczyna znak ,/’ — konsekwencje zalezg od
implementacii.

- Konsekwencje wielokrotnego wystgpienia w nazwie znaku ,/’ zalezg
od implementacii.

" Linux wymaga nazw postaci /somename (nie dtuzszych niz {NAMELEN-4}
bajtow). Semafory nazwane przechowywane sg w wirtualnym systemie plikow,
normalnie montowanym pod /dev/shm, przy czym nazwy majg postac

sem.somename.

" Dokumentacja Linux semaforow POSIX: sem_overview(7)

Slajdy do wyktadu ,Systemy operacyjne 2”

Semafory nazwane — tworzenie, otwieranie

sem t *sem open(const char *name, int oflag
/* mode t mode, unsigned int value *x/);

Funkcja zwraca wskaznik na strukture semafora; w przypadku btedu zwraca
(sem_t)(SEM_FAILED), po ustawieniu kodu btedu w errno .

Parametry:
name - nazwa semafora.

oflag - okresla tryb dostepu (O_RDONLY, O WRONLY, O RDWR,
O_CREAT, O _EXCL). Jezeli tworzony jest nowy semafor wymagane
sg dwa dodatkowe parametry wywotania:
mode - prawa dostepu (r i w — jak dla plikow)

value - poczgtkowa wartos¢ semafora
Uwaaqi:
« Wywotanie sem_open() jest przerywane przez asynchroniczng obstuge
sygnatu w procesie wywotujgcym sem_open() .

« Maks. liczba semaforéw: {SEM NSEM_ MAX} (>=256), maks. Wartos¢
semafora: {SEM_ VALUE MAX} (>=32767), patrz <unistd.h>

Slajdy do wyktadu ,Systemy operacyjne 2”

Odtaczenie/usuniecie semafora

" Jesli proces nie potrzebuje dostepu do semafora powinien go zamkng¢:

int sem close(sem t *sem);

® Semafor o danej nazwie (name) mozna zaznaczy¢ do usuniecia: :

int sem unlink(char *name);

Uwaga: Funkcja usuwa natychmiast jedynie nazwe semafora z systemu,
ale semafor jest naprawde usuniety, gdy zostanie odtgczony (przez

wywotanie sem_close ()) przez wszystkie procesy, ktore go wczesniej
dotgczyty.

Slajdy do wyktadu ,Systemy operacyjne 2”

Operacje czekaj | sygnalizuj

® Blokujgce i nieblokujgce wykonanie operacji czekaj wait :
int sem wait(sem t * sem);

int sem trywait(sem t * sem);

" Wykonanie operacji sygnalizuj:

int sem post(sem t * sem);

® Aktualng wartos¢ semafora mozna uzyskac¢ przez wywotanie :

int sem getvalue(sem t * sem, int *valp);

Slajdy do wyktadu ,Systemy operacyjne 2”

Nienazwane semafory POSIX

" Nienazwane semafory sg przechowywane w strukturze sem _t, dostep do tej
struktury musi by¢ zorganizowany przez wspotpracujgce watki czy procesy.
Inicjacja struktury z nadaniem wartosci poczgtkowej value :

int sem init(sem t * sem, int shared,
unsigned int wvalue);

Jesli shared==0 — to semafor jest wspotdzielony przez watki jednego
procesu; w przeciwnym przypadku jest wspotuzytkowany przez
procesy..

" Usuniecie semafora przechowywanego w strukturze danych wskazywanej
przez sem

int sem destroy(sem t * sem);

Wykorzystywanie usunietego semafora ma nieokreslone skutki — az
do ponownej inicjalizacji przez sem_init(...) .

® Operacje semaforowe (wait/post) wykonywane sg przez te same funkcje
(sem wait () and sem_post()), ktore sg uzywane dla semaforéw
nazwanych.

Slajdy do wyktadu ,Systemy operacyjne 2”

Inne obiekty synchronizacji POSIX

" Muteks/zamek (mutex)
" Zmienna warunku (Condition variable)
® Bariera (barrier)

" Zamek czytelnikéw-pisarza/odczytu-zapisu (Read-Write Lock)

Slajdy do wyktadu ,Systemy operacyjne 2”

Inne obiekty synchronizacji POSIX: muteks

" Muteks (zamek). Obiekt synchronizacji, ktéry umozliwia wykluczenie dostepu
do sekcji krytycznej. Watek, ktory zajgt muteks staje sie jego czasowym
wiascicielem. Tylko watek-wtasciciel moze zwolni¢ muteks — przez co inny watek
moze muteks zajgc.

" Podstawowe operacje:
= Zajecje muteksu (zablokowanie dostepu do sekcji krytycznej dla innych)
int pthread mutex lock (pthread mutex t #mp);// blocking
int pthread mutex trylock (pthread mutex t #mp);// non-bl.
= Zwolnienie muteksu (odblokowanie dostepu do sekcji krytycznej)
int pthread mutex unlock (pthread mutex t #mp)

Sposéb uzycia muteksu:

lock

Il sekcja krytyczna: kod, ktory powinien mie¢ wytgczny dostep
// do wspotdzielonych danych

unlock

Slajdy do wyktadu ,Systemy operacyjne 2”

Tworzenie | inicjacja muteksu

" Tworzenie muteksu o domysinych atrybutach

pthread mutex t mutex=PTHREAD MUTEX INITIALIZER;

" Nadawanie muteksoéw poczatkowych atrybutow
int pthread mutex init (
pthread mutex t #mp,// ptr to mutex
const pthread mutexattr t #mattr);// ptr to attributes

® Niszczenie muteksu

int pthread mutex destroy(pthread mutex t *mutex);

Slajdy do wyktadu ,Systemy operacyjne 2”

Atrybuty muteksu

® Domyslna inicjacja struktury atrybutow muteksu
int pthread mutexattr init(pthread mutexattr t #mattr);

Informacja o odczycie/modyfikacji atrybutow: man pthread mutexattr destroy
Liczba atrybutow zalezy od implementaciji.

Niektore atrybuty muteksow w systemie Linux (non-RT):

pshared muteks moze (albo nie moze) by¢ wspodtdzielony przez procesy
type : NORMAL muteks nie wykrywa blokady (deadlock) kiedy watek probuje
zajgC zajety muteks
ERRORCHECK muteks sprawdzajgcy poprawnosc¢ uzycia
RECURSIVE mozliwe jest wielokrotne zajmowanie tego samego muteksu

przez jeden watek, ale wymaga to wielokrotnego
odblokowowywania — by muteks stat sie wolny

® Niszczenie (uniewaznianie) struktury atrybutow
int pthread mutexattr destroy(pthread mutexattr t #mattr);

Slajdy do wyktadu ,Systemy operacyjne 2”

Robust mutex

" Muteksy POSIX mogg miec atrybut robustness (patrz
pthread mutexattr _setrobust(3)). Atrybut ten okresla zachowanie funkc;ji
obstugujgcych muteks, gdy zakonczy sie watek, ktory nie zwolnit zajetego przez
siebie muteksu.

® Jesli muteks zostat inicjowany przez atrybut PTHREAD_MUTEX ROBUST, a
pozniej watek, ktory zajat ten muteks (stajac sie jego przejsciowym ,wiascicielem”)
zakonczyt sie bez zwolnienia tego muteksu, to wszystkie nastepne proby
wykonania funkcji pthread mutex_lock() dla tego muteksu zawiodg, zwracajgc
kod EOWNERDEAD, by zwrdoci¢ uwage na to ze watek jest w stanie niespojnym
(zajety muteks ma nieistniejgcego wtasciciela). Zwykle w tej sytuacji kandydat na
witasciciela powinien wywota¢ funkcje pthread mutex_consistent() na muteksie,
by naprawic jego stan — przed probg wykonania jakiejkolwiek innej operacji.

® Jesli kandydat na nastepnego witasciciela sprobuje jednak zwolni¢ muteks przy
pomocy wywotania funkcji pthread _mutex _unlock() - zanim naprawi jego stan —
muteks stanie sie trwale nieuzyteczny (,popsuty”). Wszystkie nastepne proby jego
zajecia przy pomocy wywotania pthread mutex_lock() zawiodg z kodem btedu
ENOTRECOVERABLE. Jedyna dozwolona (moggca sie wykona¢ poprawnie)
operacja, to wywotanie dla popsutego muteksu funkcji pthread mutex_destroy().

Slajdy do wyktadu ,Systemy operacyjne 2”

Zmienna warunku

® Zmienna warunku — Obiekt synchronizacji, ktory pozwala watkowi zawiesic
wielokrotnie wykonanie, dopdoki warunek zwigzany ze zmienng stanie sie
prawdziwy. Watek zawieszony w ten sposob nazywany jest zablokowanym
przez zmienng warunku.”

" Tworzenie zmiennej warunku (CV) z domysing inicjalizacja:

pthread cond t cond=PTHREAD COND INITIALIZER;

" Inicjalizacja CV:
int pthread cond init (
pthread cond t #cond, //ptrtoCV
const pthread condattr t #mattr);// ptrto attributes

® Niszczenie CV

int pthread cond destroy(pthread cond t *cond);

Slajdy do wyktadu ,Systemy operacyjne 2”

Zmienna warunku

" Zmienna warunku zawsze wspotpracuje z muteksem.

int pthread cond wait (pthread cond t #cv ,
pthread mutex t #mutex) ;

Wywotanie pthread cond_ wait() nierozdzielnie (atomowo):

® zwalnia mutex oraz

" rozpoczyna blokowanie watku na zmiennej warunku ponizszych.

Po pomysinym powrocie z funkcji pthread cond_wait() muteks jest ponownie zajety
przez watek wywotujacy.

" Wywotanie ponizszych funkcji powoduje odblokowanie watkéw zablokowanych na
zmiennej warunku cond

int pthread cond broadcast (pthread cond t *cond); /* all */

int pthread cond signal (pthread cond t *cond); /* >= 1 */

Jezeli aktualnie nie ma watkéw zablokowanych na zmiennej warunku — powiadomienie

o odblokowaniu nie powoduje zadnych skutkéw (teraz i w przysztosci).

Slajdy do wyktadu ,Systemy operacyjne 2”

Schemat uzycia cv+mutex

pthread cond t cv=PTHREAD COND INITIALIZER;
pthread mutex t mutex ;

volatile sig atomic t condition is false =1;
pthread mutex lock (&mutex) ;

while (condition is false) {/* sprawdzenie warunku */
int ret\= pthread cond wait (&cv , &mutex) ;
if (ret { /* error */ }

czes¢ kodu sekcji krytyczne],
wykonywana pod ochrona mutex-u */
pthread mutex unlogk (&mutex) ;

pthread mutex lock (&mutex) ;
condition is false =0; /* zmiana warunku

— pod ochrona mutex-u */
pthread cond signal (&cv);/* sygnalizacja */
- pthread mutex unlock (&mutex) ;

Przykitad: ,,Hello world” z CV

pthread mutex t prt lock = PTHREAD MUTEX INITIALIZER;
pthread cond t prt cv = PTHREAD COND INITIALIZER;
int prt = 0;
volid *hello thread(void *arg) {
[pthread mutex lock (&prt lock);
printf ("hello ");

— prt = 1;
pthread cond signal (&prt cv);
- pthread mutex unlock (&prt lock);

return (NULL) ;
}
volid *world thread(void *arg) {
B pthread mutex lock (&prt lock) ;
while (prt == 0)
— pthread cond wait (&prt cv, &prt lock);
printf ("world") ;
- pthread mutex unlock (&prt lock);
pthread exit (0);

Slajdy do wyktadu ,Systemy operacyjne 2”

Przykiad: ,,Hello world” z CV - c.d.

int main (int argc, char *argv([]) {

int n;

pthread attr t attr;

pthread t tid;

pthread attr init (&attr);

pthread attr setdetachstate (&attr, PTHREAD CREATE DETACHED) ;

1f ((n = pthread create(&tid, &attr, world thread, NULL)) > 0){
fprintf (stderr, "pthread create: %s\n",

strerror (n)),; exit(l);

}

pthread attr destroy(&attr);

1f ((n = pthread create(&tid, NULL, hello thread, NULL)) > 0) {
fprintf (stderr, "pthread create: %s\n",

strerror(n)),; exit (1l);

if ((n = pthread join(tid, NULL)) > 0) {
fprintf (stderr, "pthread join: %$s\n", strerror(n));
exit (1),

}

printf ("\n") ;

return (0);

Slajdy do wyktadu ,Systemy operacyjne 2”

Inne obiekty synchronizacji POSIX

® Bariera — Obiekt synchronizaciji, ktory pozwala zablokowaé pewng liczbe watkow
w funkcji pthread barier wait () . Funkcja

int pthread barrier wait(pthread barrier t *barrier);

przestaje blokowac, gdy okreslona liczba watkow dotrze do blokady. Jeden z
oczekujgcych watkdéw otrzymuje z funkcji warto$¢ niezerowg

(PTHREAD BARRIER_SERIAL THREAD), a pozostate: 0, po czym bariera
zostaje ustawiona w stan poczatkowy (taki jak bezposrednio po wywotaniu funkcji
Inicjacji: pthread_barrier_init()). Funkcja pthread barrier _destroy() niszczy
bariere. Patrz man: thread_barrier_destroy(3P), thread_barrier_wait(3P)

® Zamek czytelnikéw-pisarza/odczytu-zapisu (Multiple readers, single writer
locks) umozliwia wielu watkom na jednoczesny dostep do wspoétdzielonej dane;
w trybie odczytu oraz wytgczny dostep jednemu watkowi w trybie zapisu. WatKki
mogg haleze¢ do jednego procesu, bgdz réznych procesow. Wazne jest, by
struktura reprezentujgca zamek byta dla wszystkich wspotpracujgcych watkow
dostepna w trybie R/W. Patrz: man pthread rwlock rdlock,
pthread rwlock wrlock, pthread rwlock unlock

Slajdy do wyktadu ,Systemy operacyjne 2”

