POSIX IPC

Message Shared Semaphores
queues memory

Header files <mqgueue.h> <sys/mman.h> <semaphore.h>
Creation/ opening mq_open(), shm_open(), sem_open()
access/removal mq_close(), shm_unlink() sem_close(),
mq_unlink() sem_unlink(),
sem_init(),
sem_destroy()
Control operations mq_getattr(), ftruncate(),
mq_setattr() fstat()
Communication mq_send() mmap() sem_wait(),
mq_receive(), munmap() sem_trywait(),
mq_notify() sem_post(),

sem_getvalue()

" POSIX IPC object have mostly kernel persistence (with notable exception of the
semaphore in memory, which is process persistent, i.e. it exists until it is
explicitly destroyed (sem_destroy()) or its memory becomes unavailable).

14 L.J. Opalski, slides for Operating Systems course

POSIX SEM - namespace and id-space

® Named semaphores identify a semaphore instance by a string (name
argument of sem_open() function call).
= |t is unspecified whether the name appears in the file system and is
visible to other functions that take pathnames as arguments.
= The name argument shall conform to the construction rules for a
pathname.

- If name begins with the slash character, then processes calling
sem_open() with the same value of name shall refer to the same
semaphore object, as long as that name has not been removed.

- If name does not begin with the slash character, the effect is
implementation-defined.

- The interpretation of slash characters other than the leading slash
character in name is implementation-defined.

" Linux requires name of the form /somename (not longer than {NAMELEN-4}
bytes). Named semaphores are created in a virtual filesystem, normally
mounted under /dev/shm, with names of the form sem.somename.

" Linux semaphore characteristics: see sem_overview(7)

15 L.J. Opalski, slides for Operating Systems course

Semaphore creation/opening

sem t *sem open(const char *name, int oflag
/* mode t mode, unsigned int value *x/);

The function returns a pointer to a semaphore structure; on failure it returns
(sem_t)(SEM_FAILED), setting error code in errno .

Parameters:
name - the semaphore name.

oflag - specifies access mode (O _RDONLY, O WRONLY, O _RDWR,
O_CREAT, O _EXCL). If a new semaphore is created the two
arguments are needed:

mode - access rights (r i w — as for files)

value - initial semaphore value

Remarks:

« Function call can be interrupted by signal delivery to the process calling
sem_open()

« Maximum nr of POSIX semaphores: {SEM_NSEM_ MAX} (>=256),
max.semaphore value: {SEM VALUE_ MAX} (>=32767), see <unistd.h>

16 L.J. Opalski, slides for Operating Systems course

Closing access to semaphore/ removal

®" When a process no longer needs access to a semaphore it should close
access with:

int sem close(sem t *sem);

® A semaphore with given name can be removed with:

int sem unlink(char *name);

Note: the function removes the name of the semaphore from the system
immediately, but the semaphore is really destroyed when all processes,
which opened access to this semaphore close the semaphore descriptor
with sem_close() call.

17 L.J. Opalski, slides for Operating Systems course

Wait and post operations

® Blocking and non-blocking wait operations are invoked with:
int sem wait(sem t * sem);

int sem trywait(sem t * sem);

® post operation is invoked with:

int sem post(sem t * sem);

® Current value of the semaphore can be retrieved with:

int sem getvalue(sem t * sem, int *valp);

18 L.J. Opalski, slides for Operating Systems course

Unnamed semaphores

" Unnamed semaphore resides in a memory structure (sem_t) that is
shared by cooperating threads or processes. The structure is initialized
with given value with a call:

int sem init(sem t * sem, int shared,
unsigned int value) ;

If shared==0 — than the semaphore is shared by threads of one
process, otherwise it is shared by processes.

" The following call destructs the semaphore associated with the given
structure sem

int sem destroy(sem t * sem);

Using a semaphore that has been destroyed produces undefined
results, until the semaphore has been reinitialized using sem_init(...).

" The semaphore operations (wait/post) are made with calls to
sem wait() and sem post() - respectively (the same function

which are used for named semaphores).

19 L.J. Opalski, slides for Operating Systems course

Other POSIX synchro. objects

| Mutex

® Condition variable

® Barrier

® Read-Write Lock

20

L.J. Opalski, slides for Operating Systems course

Other POSIX synchro. objects: mutex

" Mutex - a synchronization object used to allow multiple threads to serialize their
access to shared data. The name derives from the capability it provides; namely,
mutual-exclusion. The thread that has locked a mutex becomes its owner and
remains the owner until that same thread unlocks the mutex.

® Basic mutex operations:
= Locking access to critical section
int pthread mutex lock (pthread mutex t smp);// blocking
int pthread mutex trylock (pthread mutex t #mp);// non-bl.
= Unlocking access to critical section
int pthread mutex unlock (pthread mutex t #mp)

Pattern of use:

lock
/I critical section: code that should access a shared

/] variable in exclusive fashion
unlock

21 L.J. Opalski, slides for Operating Systems course

Mutex creation and initialization

® Mutex creation and default initialization

pthread mutex t mutex=PTHREAD MUTEX INITIALIZER;

" Initialization of a mutex
int pthread mutex init (
pthread mutex t #mp,// ptr to mutex
const pthread mutexattr t #mattr);// ptr to attributes

® Mutex destruction

int pthread mutex destroy(pthread mutex t *mutex);

22 L.J. Opalski, slides for Operating Systems course

Mutex attributes

" Initialization of an attributes structure with default values
int pthread mutexattr init(pthread mutexattr t #mattr);

For setting/getting individual attributes see man pthread mutexattr destroy.

Avalilable attributes are implementation specific.

Linux mutex attributes (non-RT):

pshared mutex can be shared (or not) by processes

type : NORMAL mutex does not detect deadlock when locking locked
ERRORCHECK operations are checked for validity (e.g. locking locked etc.)
RECURSIVE multiple locking possible but require multiple unlocking

PTHREAD MUTEX DEFAULT - animplementation may map this mutex to
one of the other mutex types.
® Destruction of attributes structure

int pthread mutexattr destroy(pthread mutexattr t #mattr);

23 L.J. Opalski, slides for Operating Systems course

Robust mutex

® POSIX mutexes have robustness attribute (see pthread mutexattr _setrobust(3)).
It specifies the behavior of the mutex when the owning thread dies without unlocking

the mutex.

" If a mutex is initialized with the PTHREAD MUTEX_ROBUST attribute and its owner
dies without unlocking it, any future attempts to call pthread mutex_lock() on this
mutex will succeed and return EOWNERDEAD, to indicate that the original owner of
the locked mutex no longer exists and so the mutex is in inconsistent state. Usually
after EOWNERDEAD is returned, the next owner should call
pthread mutex_ consistent() on the acquired mutex first, to make it consistent
again - before using it any further.

" If the next owner unlocks the mutex using pthread mutex_unlock() before making
it consistent, the mutex will be permanently unusable and any subsequent attempts
to lock it using pthread mutex_lock() fail with the error ENOTRECOVERABLE.
The only permissible operation on such a mutex is pthread mutex_destroy().

24 L.J. Opalski, slides for Operating Systems course

Condition variable

" Condition variable (CV) — A synchronization object which allows a thread to
suspend execution, repeatedly, until some associated predicate becomes
true. A thread whose execution is suspended on a condition variable is said
to be blocked on the condition variable.

" Condition variable (CV) creation and default initialization

pthread cond t cond=PTHREAD COND INITIALIZER;

" Initialization of a CV:
int pthread cond init (
pthread cond t #cond, //ptrtoCV
const pthread condattr t #mattr);// ptrto attributes

® CV destruction

int pthread cond destroy(pthread cond t *cond);

o5 L.J. Opalski, slides for Operating Systems course

Condition variable

" Condition variable cooperates with a mutex.

int pthread cond wait (pthread cond t x*cv ,
pthread mutex t =*mutex) ;

The function atomically:
" realese mutex and
® causes the calling thread to block on the condition variable cond.

Upon successful return, the mutex shall have been locked and shall be owned
by the calling thread.

® These functions shall unblock threads blocked on a condition variable cond.
int pthread cond broadcast (pthread cond t *cond); /* all */
int pthread cond signal (pthread cond t *cond); /* >= 1 */

If no thread is actually found blocked, while signaling, the unblocking notification
IS permanently lost.

26 L.J. Opalski, slides for Operating Systems course

Example of CV + mutex use

pthread cond t cv=PTHREAD COND INITIALIZER;
pthread mutex t mutex;
volatile sig atomic t condition is false =1;
pthread mutex lock (&mutex) ;
while (condition is false) {/* condition check */
int ret\= pthread cond wait (&cv , &mutex) ;
if (ret { /* error */ }
/* the main part of critical section code executes
under mutex protection */

pthread mutex unlock\ (&mutex) ;

—

pthread mutex Yock (&mutex) ;
condition is false =0; /* flag change under
mutex protection */
pthread cond signal (&cv) ;/* signalling */
pthread mutex unlock (&mutex) ;

27 L.J. Opalski, slides for Operating Systems course

Example: ,,Hello world” with CV

pthread mutex t prt lock = PTHREAD MUTEX INITIALIZER;
pthread cond t prt cv = PTHREAD COND INITIALIZER;
int prt = 0;
void *hello thread(void *arg) {
[pthread mutex lock(&prt lock);
printf ("hello ");
— prt = 1;
pthread cond signal (&prt _cv);
pthread mutex unlock(&prt lock);
return (NULL) ;

}
void *world thread(void *arg) {
— pthread mutex lock(&prt lock);
while (prt == 0)
pthread cond wait (&prt cv, &prt lock);
printf ("world") ;
pthread mutex unlock(&prt lock);
— pthread exit (0);

o8 L.J. Opalski, slides for Operating Systems course

Example: ,,Hello world” with CV - cont.

int main(int argc, char *argv([]) {

int n;

pthread attr t attr;

pthread t tid;

pthread attr init (&attr);

pthread attr setdetachstate(&attr, PTHREAD CREATE DETACHED) ;

1f ((n = pthread create(&tid, é&attr, world thread, NULL)) > 0){
fprintf (stderr, "pthread create: %s\n",

strerror(n)); exit(1l);

}

pthread attr destroy(&attr);

1f ((n = pthread create(&tid, NULL, hello thread, NULL)) > 0) {
fprintf (stderr, "pthread create: %$s\n",

strerror(n)); exit(1l);

if ((n = pthread join(tid, NULL)) > 0) {
fprintf (stderr, "pthread join: %s\n", strerror(n));
exit (1) ;

}

printf ("\n") ;

return (0);

29 L.J. Opalski, slides for Operating Systems course

Other POSIX synchronization objects

® Barrier - A synchronization object that allows multiple threads to synchronize at a
particular point in their execution. See man pthread barrier_wait . A barrier
synchronization function

int pthread barrier wait(pthread barrier t *barrier);

Is blocking the calling thread until the required number of threads calls this function.
Then one thread returns from pthread barrier wait() call with a non-zero valu
(PTHREAD BARRIER_SERIAL THREAD) and remaining receive 0; Afterwards
the barrier state is reset to that directly after initialization with pthread barrier_init()
function. pthread barrier _destroy() function destroys the referenced barrier — see
man: thread_Dbarrier_destroy(3P), thread barrier_wait(3P)

" Multiple readers, single writer (read-write) locks allow many threads to have
simultaneous read-only access to data while allowing only one thread to have
write access at any given time. They are typically used to protect data that is
read-only more frequently than it is changed. Read-write locks can be used to
synchronize threads in the current process and other processes if they are
allocated in memory that is writable and shared among the cooperating processes
and have been initialized for this behavior. See e.g. man
pthread rwlock_rdlock, pthread_rwlock wrlock, pthread rwlock unlock

30 L.J. Opalski, slides for Operating Systems course

