
L.J. Opalski, slides for Operating Systems course
14

POSIX IPC 

▪ POSIX IPC object have mostly kernel persistence (with notable exception of the 

semaphore in memory, which is process persistent, i.e. it exists until it is

explicitly destroyed (sem_destroy()) or its memory becomes unavailable).

Message 

queues

Shared

memory

Semaphores

Header files <mqueue.h> <sys/mman.h> <semaphore.h>

Creation/ opening 

access/removal

mq_open(), 

mq_close(),

mq_unlink()

shm_open(), 

shm_unlink()

sem_open()

sem_close(),

sem_unlink(),

sem_init(),

sem_destroy()

Control operations mq_getattr(), 

mq_setattr()

ftruncate(), 

fstat()

Communication mq_send()

mq_receive(), 

mq_notify()

mmap()

munmap()

sem_wait(), 

sem_trywait(), 

sem_post(), 

sem_getvalue()



L.J. Opalski, slides for Operating Systems course
15

POSIX SEM – namespace and id-space

▪ Named semaphores identify a semaphore instance by a  string (name

argument of sem_open() function call). 

▪ It is unspecified whether the name appears in the file system and is 

visible to other functions that take pathnames as arguments. 

▪ The name argument shall conform to the construction rules for a 

pathname. 

• If name begins with the slash character, then processes calling 

sem_open( ) with the same value of name shall refer to the same 

semaphore object, as long as that name has not been removed. 

• If name does not begin with the slash character, the effect is 

implementation-defined. 

• The interpretation of slash characters other than the leading slash 

character in name is implementation-defined.

▪ Linux requires name of the form /somename (not longer than {NAMELEN-4} 

bytes). Named  semaphores are created in a virtual filesystem, normally 

mounted under /dev/shm, with  names  of  the  form  sem.somename. 

▪ Linux semaphore characteristics: see sem_overview(7)



L.J. Opalski, slides for Operating Systems course
16

Semaphore creation/opening

sem_t *sem_open(const char *name, int oflag

/* , mode_t mode, unsigned int value */);

The function returns a pointer to a semaphore structure; on failure it returns 

(sem_t)(SEM_FAILED),  setting error code in  errno .

Parameters:

name - the semaphore name. 

oflag - specifies access mode (O_RDONLY, O_WRONLY, O_RDWR, 

O_CREAT, O_EXCL). If a new semaphore is created the two 

arguments are needed:

mode - access rights (r i w – as for files)

value - initial semaphore value

Remarks: 

• Function call can be interrupted by signal delivery to the process calling 

sem_open() 

• Maximum nr of POSIX semaphores: {SEM_NSEM_MAX} (>=256), 

max.semaphore value: {SEM_VALUE_MAX} (>=32767), see <unistd.h>



L.J. Opalski, slides for Operating Systems course
17

Closing access to semaphore/ removal

▪ When a process no longer needs access to a semaphore it should close 

access with: 

int sem_close(sem_t *sem);

▪ A semaphore with given name can be removed with:

int sem_unlink(char *name);

Note: the function removes the name of the semaphore from the system 

immediately, but the semaphore is really destroyed when all processes, 

which opened access to this semaphore close the semaphore descriptor 

with sem_close() call.



L.J. Opalski, slides for Operating Systems course
18

Wait and post operations

▪ Blocking and non-blocking wait operations are invoked with: 

int sem_wait(sem_t * sem);

int sem_trywait(sem_t * sem);

▪ post operation is invoked with: 

int sem_post(sem_t * sem);

▪ Current value of the semaphore can be retrieved with:

int sem_getvalue(sem_t * sem, int *valp);



L.J. Opalski, slides for Operating Systems course
19

Unnamed semaphores

▪ Unnamed semaphore resides in a memory structure (sem_t) that is 

shared by cooperating threads or processes. The structure is initialized 

with given value with a call: 

int sem_init(sem_t * sem, int shared, 

unsigned int value);

If shared==0 – than the semaphore is shared by threads of one 

process, otherwise it is shared by processes. 

▪ The following call destructs the semaphore associated with the given 

structure sem : 

int sem_destroy(sem_t * sem);

Using a semaphore that has been destroyed produces  undefined  

results, until the semaphore has been reinitialized using sem_init(…).

▪ The semaphore operations (wait/post) are made with calls to 
sem_wait() and sem_post() - respectively (the same function 

which are used for named semaphores).



L.J. Opalski, slides for Operating Systems course
20

Other POSIX synchro. objects

▪ Mutex

▪ Condition variable 

▪ Barrier

▪ Read-Write Lock



L.J. Opalski, slides for Operating Systems course
21

Other POSIX synchro. objects: mutex

▪ Mutex - a synchronization object used to allow multiple threads to serialize their 

access to shared data. The name derives from the capability it provides; namely, 

mutual-exclusion. The thread that has locked a mutex becomes its owner and 

remains the owner until that same thread unlocks the mutex.

▪ Basic mutex operations:

▪ Locking access to critical section

int pthread_mutex_lock(pthread_mutex_t ∗mp);// blocking

int pthread_mutex_trylock(pthread_mutex_t ∗mp);// non-bl. 

▪ Unlocking access to critical section

int pthread_mutex_unlock(pthread_mutex_t ∗mp);

Pattern of use:

lock

// critical section: code that should access a shared 

// variable in exclusive fashion
unlock



L.J. Opalski, slides for Operating Systems course
22

Mutex creation and initialization

▪ Mutex creation and default initialization

pthread_mutex_t mutex=PTHREAD_MUTEX_INITIALIZER;

▪ Initialization of a mutex

int pthread_mutex_init ( 

pthread_mutex_t ∗mp,// ptr to mutex

const pthread_mutexattr_t ∗mattr);// ptr to attributes

▪ Mutex destruction

int pthread_mutex_destroy( pthread_mutex_t *mutex);



L.J. Opalski, slides for Operating Systems course
23

Mutex attributes

▪ Initialization of an attributes structure with default values

int pthread_mutexattr_init(pthread_mutexattr_t ∗mattr);

For setting/getting individual attributes see man pthread_mutexattr_destroy.

Available attributes are implementation specific. 

Linux mutex attributes (non-RT):

pshared mutex can be shared (or not) by processes

type : NORMAL mutex does not detect deadlock when locking locked

ERRORCHECK operations are checked for validity (e.g. locking locked etc.)

RECURSIVE multiple locking possible but require multiple unlocking

PTHREAD_MUTEX_DEFAULT - an implementation may map this mutex to 

one of the other mutex types.

▪ Destruction of attributes structure

int pthread_mutexattr_destroy(pthread_mutexattr_t ∗mattr);



L.J. Opalski, slides for Operating Systems course
24

Robust mutex

▪ POSIX mutexes have robustness attribute (see pthread_mutexattr_setrobust(3)). 

It specifies the behavior of the mutex when the owning thread dies without unlocking 

the mutex.

▪ If a mutex is initialized with the PTHREAD_MUTEX_ROBUST attribute and its owner 

dies without unlocking it, any future attempts to call pthread_mutex_lock() on this 

mutex will succeed and return EOWNERDEAD, to indicate that the original owner of 

the locked mutex no longer exists and so the mutex is in inconsistent state. Usually 

after EOWNERDEAD is returned, the next owner should call 

pthread_mutex_consistent() on the acquired mutex first, to make it consistent 

again - before using it any further.

▪ If the next owner unlocks the mutex using pthread_mutex_unlock() before making 

it consistent, the mutex will be permanently unusable and any subsequent attempts 

to lock it using pthread_mutex_lock() fail with the error ENOTRECOVERABLE. 

The only permissible operation on such a mutex is pthread_mutex_destroy( ).



L.J. Opalski, slides for Operating Systems course
25

Condition variable

▪ Condition variable (CV) – A synchronization object which allows a thread to 

suspend execution, repeatedly, until some associated predicate becomes 

true. A thread whose execution is suspended on a condition variable is said 

to be blocked on the condition variable. 

▪ Condition variable (CV)  creation and default initialization

pthread_cond_t cond=PTHREAD_COND_INITIALIZER;

▪ Initialization of a CV:

int pthread_cond_init ( 

pthread_cond_t ∗cond, // ptr to CV

const pthread_condattr_t ∗mattr); // ptr to attributes

▪ CV destruction

int pthread_cond_destroy( pthread_cond_t *cond);



L.J. Opalski, slides for Operating Systems course
26

Condition variable

▪ Condition variable cooperates with a mutex.

int pthread_cond_wait ( pthread_cond_t ∗cv ,
pthread_mutex_t ∗mutex ) ;

The function atomically:

▪ realese mutex and 

▪ causes the calling thread to block on the condition variable cond. 

Upon successful return, the mutex shall have been locked and  shall  be owned 

by the calling thread.

▪ These functions shall unblock threads blocked on a condition variable cond.

int pthread_cond_broadcast(pthread_cond_t * cond); /* all */

int pthread_cond_signal(pthread_cond_t * cond); /* >= 1 */

If no thread is actually found blocked, while signaling, the unblocking notification 
is permanently lost.



L.J. Opalski, slides for Operating Systems course
27

Example of CV + mutex use

pthread_cond_t cv=PTHREAD_COND_INITIALIZER;

pthread_mutex_t mutex;

volatile sig_atomic_t condition_is_false =1;

pthread_mutex_lock (&mutex ) ;

while ( condition_is_false ) {/* condition check */

int ret = pthread_cond_wait (&cv , &mutex ) ;

if ( ret ) { . . . . /∗ error ∗/ }
. . . /* the main part of critical section code executes

under mutex protection */

}

pthread_mutex_unlock (&mutex ) ;

. . .

pthread_mutex_lock (&mutex ) ;

condition_is_false =0; /* flag change under

mutex protection */

pthread_cond_signal (&cv ) ;/* signalling */

pthread_mutex_unlock (&mutex ) ;

. . .



L.J. Opalski, slides for Operating Systems course
28

Example: „Hello world” with CV

pthread_mutex_t prt_lock = PTHREAD_MUTEX_INITIALIZER;

pthread_cond_t prt_cv = PTHREAD_COND_INITIALIZER;

int prt = 0;

void *hello_thread(void *arg){

pthread_mutex_lock(&prt_lock);

printf("hello ");

prt = 1;

pthread_cond_signal(&prt_cv);

pthread_mutex_unlock(&prt_lock);

return (NULL);

}

void *world_thread(void *arg){

pthread_mutex_lock(&prt_lock);

while (prt == 0)

pthread_cond_wait(&prt_cv, &prt_lock);

printf("world");

pthread_mutex_unlock(&prt_lock);

pthread_exit(0);

} 



L.J. Opalski, slides for Operating Systems course
29

Example: „Hello world” with CV – cont.

int main(int argc, char *argv[]){

int n;

pthread_attr_t attr;

pthread_t tid;

pthread_attr_init(&attr);

pthread_attr_setdetachstate(&attr,PTHREAD_CREATE_DETACHED);

if ((n = pthread_create(&tid, &attr, world_thread, NULL)) > 0){

fprintf(stderr, "pthread_create: %s\n",

strerror(n)); exit(1);

}

pthread_attr_destroy(&attr);

if ((n = pthread_create(&tid, NULL, hello_thread, NULL)) > 0) {

fprintf(stderr, "pthread_create: %s\n",

strerror(n)); exit(1);

}

if ((n = pthread_join(tid, NULL)) > 0) {

fprintf(stderr, "pthread_join: %s\n", strerror(n));

exit(1);

}

printf("\n");

return (0);

}



L.J. Opalski, slides for Operating Systems course
30

Other POSIX synchronization objects

▪ Barrier - A synchronization object that allows multiple threads to synchronize at a 

particular point in their execution. See man pthread_barrier_wait . A barrier

synchronization function

int pthread_barrier_wait(pthread_barrier_t *barrier);

is blocking the calling thread until the required number of threads calls this function. 

Then one thread returns from pthread_barrier_wait() call with a non-zero valu

(PTHREAD_BARRIER_SERIAL_THREAD) and remaining receive 0; Afterwards 

the barrier state is reset to that directly after initialization with pthread_barrier_init()

function. pthread_barrier_destroy() function destroys the referenced barrier – see 

man: thread_barrier_destroy(3P), thread_barrier_wait(3P)

▪ Multiple readers, single writer (read-write) locks allow many threads to have 

simultaneous read-only access to data while allowing only one thread to have 

write access at any given time. They are typically used to protect data that is 

read-only more frequently than it is changed. Read-write locks can be used to 

synchronize threads in the current process and other processes if they are 

allocated in memory that is writable and shared among the cooperating processes 

and have been initialized for this behavior. See e.g. man 

pthread_rwlock_rdlock, pthread_rwlock_wrlock, pthread_rwlock_unlock


