17643
17644
17645
17646
17647

17648
17649
17650

17651

17652
17653
17654
17655
17656
17657

17658

17659
17660
17661
17662

17663
17664
17665

17666
17667
17668
17669
17670

17671
17672
17673

17674

17675
17676

17677

17678
17679
17680
17681

17682
17683
17684
17685

General Information Threads

TSP defined for SCHED_FIFO, SCHED_RR, and SCHED_SPORADIC shall be used in an
implementation-defined manner. Each thread with system scheduling contention scope
competes for the processors in its scheduling allocation domain in an implementation-defined
manner according to its priority. Threads with process scheduling contention scope are
scheduled relative to other threads within the same scheduling contention scope in the process.

TSP If _POSIX_THREAD_SPORADIC_SERVER is defined, the rules defined for SCHED_SPORADIC
in Scheduling Policies (on page 501) shall be used in an implementation-defined manner for
application threads whose scheduling allocation domain size is greater than one.

Scheduling Documentation

If _POSIX_PRIORITY_SCHEDULING is defined, then any scheduling policies beyond

TSP SCHED_OTHER, SCHED_FIFO, SCHED_RR, and SCHED_SPORADIC, as well as the effects of
the scheduling policies indicated by these other values, and the attributes required in order to
support such a policy, are implementation-defined. Furthermore, the implementation shall
document the effect of all processor scheduling allocation domain values supported for these
policies.

2.9.5 Thread Cancellation

The thread cancellation mechanism allows a thread to terminate the execution of any other
thread in the process in a controlled manner. The target thread (that is, the one that is being
canceled) is allowed to hold cancellation requests pending in a number of ways and to perform
application-specific cleanup processing when the notice of cancellation is acted upon.

Cancellation is controlled by the cancellation control functions. Each thread maintains its own
cancelability state. Cancellation may only occur at cancellation points or when the thread is
asynchronously cancelable.

The thread cancellation mechanism described in this section depends upon programs having set
deferred cancelability state, which is specified as the default. Applications shall also carefully
follow static lexical scoping rules in their execution behavior. For example, use of setjmp(),
return, goto, and so on, to leave user-defined cancellation scopes without doing the necessary
scope pop operation results in undefined behavior.

Use of asynchronous cancelability while holding resources which potentially need to be released
may result in resource loss. Similarly, cancellation scopes may only be safely manipulated
(pushed and popped) when the thread is in the deferred or disabled cancelability states.

2.9.5.1 Cancelability States

The cancelability state of a thread determines the action taken upon receipt of a cancellation
request. The thread may control cancellation in a number of ways.

Each thread maintains its own cancelability state, which may be encoded in two bits:

1. Cancelability-Enable: When cancelability is PTHREAD_CANCEL_DISABLE (as defined
in the Base Definitions volume of POSIX.1-2008, <pthread.h>), cancellation requests
against the target thread are held pending. By default, cancelability is set to
PTHREAD_CANCEL_ENABLE (as defined in <pthread.h>).

2. Cancelability Type: When cancelability is enabled and the cancelability type is
PTHREAD_CANCEL_ASYNCHRONOUS (as defined in <pthread.h>), new or pending
cancellation requests may be acted upon at any time. When cancelability is enabled and
the cancelability type is PTHREAD_CANCEL_DEFERRED (as defined in <pthread.h>),

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 511

Authorized licensed use limited to: POLITECHNIKI WARSZAWSKIEJ. Downloaded on March 19,2016 at 10:03:44 UTC from IEEE Xplore. Restrictions apply.

17686
17687
17688
17689
17690

17691

17692

17693
17694
17695
17696
17697
17698
17699
17700
17701
17702
17703
17704
17705
17706
17707
17708
17709
17710
17711

17712

17713

Threads General Information

cancellation requests are held pending until a cancellation point (see below) is reached. If
cancelability is disabled, the setting of the cancelability type has no immediate effect as all
cancellation requests are held pending; however, once cancelability is enabled again the
new type is in effect. The cancelability type is PTHREAD_CANCEL_DEFERRED in all
newly created threads including the thread in which main () was first invoked.

2.9.5.2 Cancellation Points

Cancellation points shall occur when a thread is executing the following functions:

accept() nanosleep () select ()
aio_suspend () open () sem_timedwait ()
clock_nanosleep () openat () sem_wait ()
close() pause() send ()
connect () poll() sendmsg ()
creat() pread () sendto()
fentl ()t pselect () sigsuspend ()
fdatasync () pthread_cond_timedwait() sigtimedwait ()
fsync() pthread_cond_wait () sigwait ()
getmsg () pthread_join () sigwaitinfo()
getpmsg () pthread_testcancel () sleep ()

lockf ()Tt putmsg() system ()
mq_receive() putpmsg () tedrain ()
mg_send () pwrite() wait ()
mq_timedreceive () read () waitid ()
mq_timedsend () readv() waitpid ()
msgrco() recv() write()
msgsnd () recvfrom () writev()
msync() recomsg ()

¥ ‘When the cmd argument is F_SETLKW.

1 When the function argument is F_LOCK.

512 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. ~ Vol. 2: System Interfaces, Issue 7

Authorized licensed use limited to: POLITECHNIKI WARSZAWSKIEJ. Downloaded on March 19,2016 at 10:03:44 UTC from IEEE Xplore. Restrictions apply.

17714

17715
17716
17717
17718
17719
17720
17721
17722
17723
17724
17725
17726
17727
17728
17729
17730
17731
17732
17733
17734
17735
17736
17737
17738
17739
17740
17741
17742
17743
17744
17745
17746
17747
17748
17749
17750
17751
17752
17753
17754
17755
17756
17757
17758
17759

General Information

A cancellation point may also occur when a thread is executing the following functions:

access()
asctime()
asctime_r()
catclose()
catgets()
catopen ()
chmod ()
chown ()
closedir ()
closelog ()
ctermid()
ctime()
ctime_r()
dbm_close()
dbm_delete()
dbm_fetch ()
dbm_nextkey ()
dbm_open ()
dbm_store()
dlclose()
dlopen ()
dprintf()
endgrent ()
endhostent ()
endnetent ()
endprotoent ()
endpwent ()
endservent ()
endutxent ()
faccessat ()
fchmod ()
fchmodat ()
fchown ()
fchownat ()
felose()
fentl()t
flush()
fgete()
fgetpos()
feets()
fgetwe()
fgetws()
fmitmsg()
fopen ()
fpathconf()

Vol. 2: System Interfaces, Issue 7

Authorized licensed use limited to: POLITECHNIKI WARSZAWSKIEJ. Downloaded on March 19,2016 at 10:03:44 UTC from IEEE Xplore. Restrictions apply.

forintf()
foutc()

fouts()
Sfputwe()
Sfrutws()
fread ()
freopen()
focanf()
fseek()

fseeko()
fsetpos ()

fstat ()

fstatat ()

frell()

ftello()

fw()
futimens()
fwprintf()
fwrite()
fuscanf()
getaddrinfo()
getc()
getc_unlocked ()
getchar ()
getchar_unlocked ()
getcwd ()
getdate()
getdelim()
getgrent ()
getgrgid()
getgrgid_r()
getgrnam()
getgrnam_r ()
gethostent ()
gethostid ()
gethostname ()
getline()
getlogin ()
getlogin_r()
getnameinfo()
getnetbyaddr ()
getnetbyname()
getnetent ()
getopt ()t
getprotobyname()

Copyright © 2001-2008, IEEE and The Open Group. All rights reserved.

getprotobynumber ()
getprotoent ()
getpwent ()
getpwnam()
getpwnam_r ()
getpwuid ()
getpwuid_r()
gets()
getservbyname()
getservbyport ()
getservent ()
getutxent()
getutxid()
getutxline()
getwe()
getwchar ()
glob()
iconv_close()
iconv_open ()
ioctl()

link()

linkat ()
lio_listio()
localtime()
localtime_r()
lockf()

Iseek ()

Istat()

mkdir ()
mkdirat ()
mkdtemp ()
mkfifo()
mkfifoat ()
mknod ()
mknodat ()
mkstemp ()
mktime()
nftw()
opendir ()
openlog ()

pathconf()
pclose()

perror ()
popen()
posix_fadvise()

Threads

513

General Information

17760 posix_fallocate () putc() strerror()
17761 posix_madvise() putc_unlocked () strerror_r()
17762 posix_openpt () putchar() strftime()
17763 posix_spawn () putchar_unlocked() symlink()
17764 posix_spawnp () puts() symlinkat ()
17765 posix_trace_clear () pututxline() sync()
17766 posix_trace_close() putwe() syslog ()
17767 posix_trace_create() putwchar () tmpfile()
17768 posix_trace_create_withlog () readdir() tmpnam/()
17769 posix_trace_eventtypelist_getnext_id() readdir_r() ttyname()
17770 posix_trace_eventtypelist_rewind () readlink () ttyname_r ()
17771 posix_trace_flush() readlinkat () tzset ()
17772 posix_trace_get_attr() remove () ungetc()
17773 posix_trace_get_filter () rename() ungetwe()
17774 posix_trace_get_status() renameat () unlink()
17775 posix_trace_getnext_event () rewind () unlinkat ()
17776 posix_trace_open() rewinddir() utime()
17777 posix_trace_rewind () scandir () utimensat ()
17778 posix_trace_set_filter() scanf() utimes()
17779 posix_trace_shutdown () seekdir () vdprintf()
17780 posix_trace_timedgetnext_event () semop() vfprintf()
17781 posix_typed_mem_open () setgrent () vfwprintf()
17782 printf() sethostent () vprintf()
17783 psiginfo() setnetent () vwprintf()
17784 psignal() setprotoent () wesftime()
17785 pthread_rwlock_rdlock() setpwent () wordexp ()
17786 pthread_rwlock_timedrdlock () setservent () wprintf()
17787 pthread_rwlock_timedwrlock () setutxent() wscanf()
17788 pthread_rwlock_wrlock () sigpause()
17789 stat()
17790 An implementation shall not introduce cancellation points into any other functions specified in
17791 this volume of POSIX.1-2008.
17792 The side-effects of acting upon a cancellation request while suspended during a call of a function
17793 are the same as the side-effects that may be seen in a single-threaded program when a call to a
17794 function is interrupted by a signal and the given function returns [EINTR]. Any such side-
17795 effects occur before any cancellation cleanup handlers are called.
17796 Whenever a thread has cancelability enabled and a cancellation request has been made with that
17797 thread as the target, and the thread then calls any function that is a cancellation point (such as
17798 pthread_testcancel () or read()), the cancellation request shall be acted upon before the function
17799 returns. If a thread has cancelability enabled and a cancellation request is made with the thread
17800 as a target while the thread is suspended at a cancellation point, the thread shall be awakened
17801 and the cancellation request shall be acted upon. It is unspecified whether the cancellation
17802 request is acted upon or whether the cancellation request remains pending and the thread
17803 resumes normal execution if:
17804 The thread is suspended at a cancellation point and the event for which it is waiting occurs
17805 For any value of the cmd argument.
17806 f1 If opterr is non-zero.
514 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. ~ Vol. 2: System Interfaces, Issue 7

Authorized licensed use limited to: POLITECHNIKI WARSZAWSKIEJ. Downloaded on March 19,2016 at 10:03:44 UTC from IEEE Xplore. Restrictions apply.

General Information Threads

17807 A specified timeout expired

17808 before the cancellation request is acted upon.

17809 2.9.5.3 Thread Cancellation Cleanup Handlers

17810 Each thread maintains a list of cancellation cleanup handlers. The programmer uses the
17811 pthread_cleanup_push() and pthread_cleanup_pop() functions to place routines on and remove
17812 routines from this list.

17813 When a cancellation request is acted upon, or when a thread calls pthread_exit(), the thread first
17814 disables cancellation by setting its cancelability state to PTHREAD_CANCEL_DISABLE and its
17815 cancelability type to PTHREAD_CANCEL_DEFERRED. The cancelability state shall remain set
17816 to PTHREAD_CANCEL_DISABLE until the thread has terminated. The behavior is undefined if
17817 a cancellation cleanup handler or thread-specific data destructor routine changes the
17818 cancelability state to PTHREAD_CANCEL_ENABLE.

17819 The routines in the thread’s list of cancellation cleanup handlers are invoked one by one in LIFO
17820 sequence; that is, the last routine pushed onto the list (Last In) is the first to be invoked (First
17821 Out). When the cancellation cleanup handler for a scope is invoked, the storage for that scope
17822 remains valid. If the last cancellation cleanup handler returns, thread-specific data destructors (if
17823 any) associated with thread-specific data keys for which the thread has non-NULL values will
17824 be run, in unspecified order, as described for pthread_key_create().

17825 After all cancellation cleanup handlers and thread-specific data destructors have returned,
17826 thread execution is terminated. If the thread has terminated because of a call to pthread_exit(),
17827 the value_ptr argument is made available to any threads joining with the target. If the thread has
17828 terminated by acting on a cancellation request, a status of PTHREAD_CANCELED is made
17829 available to any threads joining with the target. The symbolic constant PTHREAD_CANCELED
17830 expands to a constant expression of type (void *) whose value matches no pointer to an object in
17831 memory nor the value NULL.

17832 A side-effect of acting upon a cancellation request while in a condition variable wait is that the
17833 mutex is re-acquired before calling the first cancellation cleanup handler. In addition, the thread
17834 is no longer considered to be waiting for the condition and the thread shall not have consumed
17835 any pending condition signals on the condition.

17836 A cancellation cleanup handler cannot exit via longjmp() or siglongjmp ().

17837 2.9.5.4 Async-Cancel Safety

17838 The pthread_cancel (), pthread_setcancelstate(), and pthread_setcanceltype() functions are defined to
17839 be async-cancel safe.
17840 No other functions in this volume of POSIX.1-2008 are required to be async-cancel-safe.

17841 2.9.6 Thread Read-Write Locks

17842 Multiple readers, single writer (read-write) locks allow many threads to have simultaneous
17843 read-only access to data while allowing only one thread to have exclusive write access at any
17844 given time. They are typically used to protect data that is read more frequently than it is
17845 changed.
17846 One or more readers acquire read access to the resource by performing a read lock operation on
17847 the associated read-write lock. A writer acquires exclusive write access by performing a write
17848 lock operation. Basically, all readers exclude any writers and a writer excludes all readers and
Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 515

Authorized licensed use limited to: POLITECHNIKI WARSZAWSKIEJ. Downloaded on March 19,2016 at 10:03:44 UTC from IEEE Xplore. Restrictions apply.

