
General Information Threads

TSP defined for SCHED_FIFO, SCHED_RR, and SCHED_SPORADIC shall be used in an
implementation-defined manner. Each thread with system scheduling contention scope
competes for the processors in its scheduling allocation domain in an implementation-defined
manner according to its priority. Threads with process scheduling contention scope are
scheduled relative to other threads within the same scheduling contention scope in the process.

TSP If _POSIX_THREAD_SPORADIC_SERVER is defined, the rules defined for SCHED_SPORADIC
in Scheduling Policies (on page 501) shall be used in an implementation-defined manner for
application threads whose scheduling allocation domain size is greater than one.

Scheduling Documentation

If _POSIX_PRIORITY_SCHEDULING is defined, then any scheduling policies beyond
TSP SCHED_OTHER, SCHED_FIFO, SCHED_RR, and SCHED_SPORADIC, as well as the effects of

the scheduling policies indicated by these other values, and the attributes required in order to
support such a policy, are implementation-defined. Furthermore, the implementation shall
document the effect of all processor scheduling allocation domain values supported for these
policies.

2.9.5 Thread Cancellation

The thread cancellation mechanism allows a thread to terminate the execution of any other
thread in the process in a controlled manner. The target thread (that is, the one that is being
canceled) is allowed to hold cancellation requests pending in a number of ways and to perform
application-specific cleanup processing when the notice of cancellation is acted upon.

Cancellation is controlled by the cancellation control functions. Each thread maintains its own
cancelability state. Cancellation may only occur at cancellation points or when the thread is
asynchronously cancelable.

The thread cancellation mechanism described in this section depends upon programs having set
deferred cancelability state, which is specified as the default. Applications shall also carefully
follow static lexical scoping rules in their execution behavior. For example, use of setjmp(),
return, goto, and so on, to leave user-defined cancellation scopes without doing the necessary
scope pop operation results in undefined behavior.

Use of asynchronous cancelability while holding resources which potentially need to be released
may result in resource loss. Similarly, cancellation scopes may only be safely manipulated
(pushed and popped) when the thread is in the deferred or disabled cancelability states.

2.9.5.1 Cancelability States

The cancelability state of a thread determines the action taken upon receipt of a cancellation
request. The thread may control cancellation in a number of ways.

Each thread maintains its own cancelability state, which may be encoded in two bits:

1. Cancelability-Enable: When cancelability is PTHREAD_CANCEL_DISABLE (as defined
in the Base Definitions volume of POSIX.1-2008, <pthread.h>), cancellation requests
against the target thread are held pending. By default, cancelability is set to
PTHREAD_CANCEL_ENABLE (as defined in <pthread.h>).

2. Cancelability Type: When cancelability is enabled and the cancelability type is
PTHREAD_CANCEL_ASYNCHRONOUS (as defined in <pthread.h>), new or pending
cancellation requests may be acted upon at any time. When cancelability is enabled and
the cancelability type is PTHREAD_CANCEL_DEFERRED (as defined in <pthread.h>),

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 511

17643

17644

17645

17646

17647

17648

17649

17650

17651

17652

17653

17654

17655

17656

17657

17658

17659

17660

17661

17662

17663

17664

17665

17666

17667

17668

17669

17670

17671

17672

17673

17674

17675

17676

17677

17678

17679

17680

17681

17682

17683

17684

17685

Authorized licensed use limited to: POLITECHNIKI WARSZAWSKIEJ. Downloaded on March 19,2016 at 10:03:44 UTC from IEEE Xplore. Restrictions apply.

Threads General Information

cancellation requests are held pending until a cancellation point (see below) is reached. If
cancelability is disabled, the setting of the cancelability type has no immediate effect as all
cancellation requests are held pending; however, once cancelability is enabled again the
new type is in effect. The cancelability type is PTHREAD_CANCEL_DEFERRED in all
newly created threads including the thread in which main() was first invoked.

2.9.5.2 Cancellation Points

Cancellation points shall occur when a thread is executing the following functions:

accept()
aio_suspend()
clock_nanosleep()
close()
connect()
creat()
fcntl()†
fdatasync()
fsync()
getmsg()
getpmsg()
lockf()††
mq_receive()
mq_send()
mq_timedreceive()
mq_timedsend()
msgrcv()
msgsnd()
msync()

nanosleep()
open()
openat()
pause()
poll()
pread()
pselect()
pthread_cond_timedwait()
pthread_cond_wait()
pthread_join()
pthread_testcancel()
putmsg()
putpmsg()
pwrite()
read()
readv()
recv()
recvfrom()
recvmsg()

select()
sem_timedwait()
sem_wait()
send()
sendmsg()
sendto()
sigsuspend()
sigtimedwait()
sigwait()
sigwaitinfo()
sleep()
system()
tcdrain()
wait()
waitid()
waitpid()
write()
writev()

† When the cmd argument is F_SETLKW.

†† When the function argument is F_LOCK.

512 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

17686

17687

17688

17689

17690

17691

17692

17693

17694

17695

17696

17697

17698

17699

17700

17701

17702

17703

17704

17705

17706

17707

17708

17709

17710

17711

17712

17713

Authorized licensed use limited to: POLITECHNIKI WARSZAWSKIEJ. Downloaded on March 19,2016 at 10:03:44 UTC from IEEE Xplore. Restrictions apply.

General Information Threads

A cancellation point may also occur when a thread is executing the following functions:

access()
asctime()
asctime_r()
catclose()
catgets()
catopen()
chmod()
chown()
closedir()
closelog()
ctermid()
ctime()
ctime_r()
dbm_close()
dbm_delete()
dbm_fetch()
dbm_nextkey()
dbm_open()
dbm_store()
dlclose()
dlopen()
dprintf()
endgrent()
endhostent()
endnetent()
endprotoent()
endpwent()
endservent()
endutxent()
faccessat()
fchmod()
fchmodat()
fchown()
fchownat()
fclose()
fcntl()†
fflush()
fgetc()
fgetpos()
fgets()
fgetwc()
fgetws()
fmtmsg()
fopen()
fpathconf()

fprintf()
fputc()
fputs()
fputwc()
fputws()
fread()
freopen()
fscanf()
fseek()
fseeko()
fsetpos()
fstat()
fstatat()
ftell()
ftello()
ftw()
futimens()
fwprintf()
fwrite()
fwscanf()
getaddrinfo()
getc()
getc_unlocked()
getchar()
getchar_unlocked()
getcwd()
getdate()
getdelim()
getgrent()
getgrgid()
getgrgid_r()
getgrnam()
getgrnam_r()
gethostent()
gethostid()
gethostname()
getline()
getlogin()
getlogin_r()
getnameinfo()
getnetbyaddr()
getnetbyname()
getnetent()
getopt()††
getprotobyname()

getprotobynumber()
getprotoent()
getpwent()
getpwnam()
getpwnam_r()
getpwuid()
getpwuid_r()
gets()
getservbyname()
getservbyport()
getservent()
getutxent()
getutxid()
getutxline()
getwc()
getwchar()
glob()
iconv_close()
iconv_open()
ioctl()
link()
linkat()
lio_listio()
localtime()
localtime_r()
lockf()
lseek()
lstat()
mkdir()
mkdirat()
mkdtemp()
mkfifo()
mkfifoat()
mknod()
mknodat()
mkstemp()
mktime()
nftw()
opendir()
openlog()
pathconf()
pclose()
perror()
popen()
posix_fadvise()

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 513

17714

17715

17716

17717

17718

17719

17720

17721

17722

17723

17724

17725

17726

17727

17728

17729

17730

17731

17732

17733

17734

17735

17736

17737

17738

17739

17740

17741

17742

17743

17744

17745

17746

17747

17748

17749

17750

17751

17752

17753

17754

17755

17756

17757

17758

17759

Authorized licensed use limited to: POLITECHNIKI WARSZAWSKIEJ. Downloaded on March 19,2016 at 10:03:44 UTC from IEEE Xplore. Restrictions apply.

Threads General Information

posix_fallocate()
posix_madvise()
posix_openpt()
posix_spawn()
posix_spawnp()
posix_trace_clear()
posix_trace_close()
posix_trace_create()
posix_trace_create_withlog()
posix_trace_eventtypelist_getnext_id()
posix_trace_eventtypelist_rewind()
posix_trace_flush()
posix_trace_get_attr()
posix_trace_get_filter()
posix_trace_get_status()
posix_trace_getnext_event()
posix_trace_open()
posix_trace_rewind()
posix_trace_set_filter()
posix_trace_shutdown()
posix_trace_timedgetnext_event()
posix_typed_mem_open()
printf()
psiginfo()
psignal()
pthread_rwlock_rdlock()
pthread_rwlock_timedrdlock()
pthread_rwlock_timedwrlock()
pthread_rwlock_wrlock()

putc()
putc_unlocked()
putchar()
putchar_unlocked()
puts()
pututxline()
putwc()
putwchar()
readdir()
readdir_r()
readlink()
readlinkat()
remove()
rename()
renameat()
rewind()
rewinddir()
scandir()
scanf()
seekdir()
semop()
setgrent()
sethostent()
setnetent()
setprotoent()
setpwent()
setservent()
setutxent()
sigpause()
stat()

strerror()
strerror_r()
strftime()
symlink()
symlinkat()
sync()
syslog()
tmpfile()
tmpnam()
ttyname()
ttyname_r()
tzset()
ungetc()
ungetwc()
unlink()
unlinkat()
utime()
utimensat()
utimes()
vdprintf()
vfprintf()
vfwprintf()
vprintf()
vwprintf()
wcsftime()
wordexp()
wprintf()
wscanf()

An implementation shall not introduce cancellation points into any other functions specified in
this volume of POSIX.1-2008.

The side-effects of acting upon a cancellation request while suspended during a call of a function
are the same as the side-effects that may be seen in a single-threaded program when a call to a
function is interrupted by a signal and the given function returns [EINTR]. Any such side-
effects occur before any cancellation cleanup handlers are called.

Whenever a thread has cancelability enabled and a cancellation request has been made with that
thread as the target, and the thread then calls any function that is a cancellation point (such as
pthread_testcancel() or read()), the cancellation request shall be acted upon before the function
returns. If a thread has cancelability enabled and a cancellation request is made with the thread
as a target while the thread is suspended at a cancellation point, the thread shall be awakened
and the cancellation request shall be acted upon. It is unspecified whether the cancellation
request is acted upon or whether the cancellation request remains pending and the thread
resumes normal execution if:

• The thread is suspended at a cancellation point and the event for which it is waiting occurs

† For any value of the cmd argument.

†† If opterr is non-zero.

514 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

17760

17761

17762

17763

17764

17765

17766

17767

17768

17769

17770

17771

17772

17773

17774

17775

17776

17777

17778

17779

17780

17781

17782

17783

17784

17785

17786

17787

17788

17789

17790

17791

17792

17793

17794

17795

17796

17797

17798

17799

17800

17801

17802

17803

17804

17805

17806

Authorized licensed use limited to: POLITECHNIKI WARSZAWSKIEJ. Downloaded on March 19,2016 at 10:03:44 UTC from IEEE Xplore. Restrictions apply.

General Information Threads

• A specified timeout expired

before the cancellation request is acted upon.

2.9.5.3 Thread Cancellation Cleanup Handlers

Each thread maintains a list of cancellation cleanup handlers. The programmer uses the
pthread_cleanup_push() and pthread_cleanup_pop() functions to place routines on and remove
routines from this list.

When a cancellation request is acted upon, or when a thread calls pthread_exit(), the thread first
disables cancellation by setting its cancelability state to PTHREAD_CANCEL_DISABLE and its
cancelability type to PTHREAD_CANCEL_DEFERRED. The cancelability state shall remain set
to PTHREAD_CANCEL_DISABLE until the thread has terminated. The behavior is undefined if
a cancellation cleanup handler or thread-specific data destructor routine changes the
cancelability state to PTHREAD_CANCEL_ENABLE.

The routines in the thread’s list of cancellation cleanup handlers are invoked one by one in LIFO
sequence; that is, the last routine pushed onto the list (Last In) is the first to be invoked (First
Out). When the cancellation cleanup handler for a scope is invoked, the storage for that scope
remains valid. If the last cancellation cleanup handler returns, thread-specific data destructors (if
any) associated with thread-specific data keys for which the thread has non-NULL values will
be run, in unspecified order, as described for pthread_key_create().

After all cancellation cleanup handlers and thread-specific data destructors have returned,
thread execution is terminated. If the thread has terminated because of a call to pthread_exit(),
the value_ptr argument is made available to any threads joining with the target. If the thread has
terminated by acting on a cancellation request, a status of PTHREAD_CANCELED is made
available to any threads joining with the target. The symbolic constant PTHREAD_CANCELED
expands to a constant expression of type (void *) whose value matches no pointer to an object in
memory nor the value NULL.

A side-effect of acting upon a cancellation request while in a condition variable wait is that the
mutex is re-acquired before calling the first cancellation cleanup handler. In addition, the thread
is no longer considered to be waiting for the condition and the thread shall not have consumed
any pending condition signals on the condition.

A cancellation cleanup handler cannot exit via longjmp() or siglongjmp().

2.9.5.4 Async-Cancel Safety

The pthread_cancel(), pthread_setcancelstate(), and pthread_setcanceltype() functions are defined to
be async-cancel safe.

No other functions in this volume of POSIX.1-2008 are required to be async-cancel-safe.

2.9.6 Thread Read-Write Locks

Multiple readers, single writer (read-write) locks allow many threads to have simultaneous
read-only access to data while allowing only one thread to have exclusive write access at any
given time. They are typically used to protect data that is read more frequently than it is
changed.

One or more readers acquire read access to the resource by performing a read lock operation on
the associated read-write lock. A writer acquires exclusive write access by performing a write
lock operation. Basically, all readers exclude any writers and a writer excludes all readers and

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 515

17807

17808

17809

17810

17811

17812

17813

17814

17815

17816

17817

17818

17819

17820

17821

17822

17823

17824

17825

17826

17827

17828

17829

17830

17831

17832

17833

17834

17835

17836

17837

17838

17839

17840

17841

17842

17843

17844

17845

17846

17847

17848

Authorized licensed use limited to: POLITECHNIKI WARSZAWSKIEJ. Downloaded on March 19,2016 at 10:03:44 UTC from IEEE Xplore. Restrictions apply.

