
L.J. Opalski, slides for Operating Systems courses
1

Last modification date: 16.11.2020

POSIX threads basics

Note: the slides do not cover thread-specific data,

thread scheduling, RT threads

L.J. Opalski, slides for Operating Systems courses
2

POSIX definitions
▪ Process- An address space with one or more threads executing within that address

space, and the required system resources for those threads/ Many of the system

resources are shared among all of the threads within a process. These include the

process ID, the parent process ID, process group ID, session membership, real,

effective, and saved set-user-ID, real, effective, and saved set-group-ID, supplementary

group.

▪ Thread - A single flow of control within a process. Each thread has its own thread
ID (TID), scheduling priority and policy, errno value, thread-specific key/value

bindings, and the required system resources to support a flow of control. Anything

whose address may be determined by a thread, including but not limited to static
variables, storage obtained via malloc(), directly addressable storage obtained

through implementation-defined functions, and automatic variables, are accessible to all

threads in the same process.

▪ Multithreaded program – a program whose executable file was produced by compiling
with c99 using the flags output by getconf POSIX_V7_THREADS_CFLAGS, and

linking with c99 using the flags output by getconf POSIX_V7_THREADS_LDFLAGS

and the –l pthread, or by compiling and linking using a non-standard utility with

equivalent flags. Execution of a multi-threaded program initially creates a single-

threaded process; the process can create additional threads using
pthread_create() or SIGEV_THREAD notifications.

L.J. Opalski, slides for Operating Systems courses
3

POSIX threads (P-threads) API

Thread creation:

int pthread_create(pthread_t *thread, // returns TID via *thread

const pthread_attr_t *attr, // ptr to thread attributes structure

void *(*start_routine)(void *), // working function

void *arg // working function argument (can be NULL)

▪); // returns 0 on success non-zero on error. According to Linux man pthreads

“the pthreads functions do not set errno”. Yet currently errno is assigned the
pthread function error code value;

The new thread starts executing by invoking start_routine(arg) .

Thread attributes can be set only at creation time, except detach state. A single
attributes object (struct pthread_attr_t) can be used in multiple

simultaneous calls to pthread_create() .

Header file Prefixes of API symbols

<pthread.h> pthread_ , PTHREAD_

L.J. Opalski, slides for Operating Systems courses
4

Attributes

▪ The attribute structure has to be initialized prior to use:

int pthread_attr_init(pthread_attr_t *tattr);

▪ Getting and setting individual attributes

int pthread_attr_getXXX(pthread_attr_t *tattr,...);

int pthread_attr_setXXX(pthread_attr_t *tattr,...);

Attribute (XXX) value meaning

detachstate PTHREAD_CREATE_JOINABLE Default, joinable state

PTHREAD_CREATE_DETACHED Non-joinable (detach) state

scope PTHREAD_SCOPE_PROCESS Thread competes for resources

with same process threads

PTHREAD_SCOPE_SYSTEM … competes with all threads

Other attributes (see pthread_attr_init(3)):
▪ inheritsched, schedpolicy, schedparam

▪ stack, guardsize,

The attribute structure can be invalidated after use:

int pthread_attr_destroy(pthread_attr_t *tattr);

L.J. Opalski, slides for Operating Systems courses
5

Passing parameters to threads (1)

▪ Method 1. each thread gets address of its specific parameter value.

Correct (safe) technique.

Example: passing a simple variable (here: int)

void * worker(void *argp){

int arg=*(int *)argp; // copying argument to arg

printf("arg=%d\n",arg);

}

int main(...){

pthread_t threads[NUM_THREADS];

int param[NUM_THREADS]; // array of thread arguments

.....

for(n=0; n<NUM_THREADS; n++){

param[n]=n;

rc = pthread_create(&threads[n], NULL,

worker, (void *) ¶m[n]);

}

...

}

L.J. Opalski, slides for Operating Systems courses
6

Passing parameters to threads (1 – cont.)

struct mystruct{ double in; double out;}; // in/out structure

void * worker(void *argp){/

struct mystruct *inout=*((struct mystruct *)argp);

inout->out=sqrt(inout->in);

printf("in=%g, out=%g\n",inout->in, inout->out);

return NULL;

}

int main(...){

pthread_t threads[NUM_THREADS];

struct mystruct args[MAXPTHREADS];

for(n=0; n<NUM_THREADS; n++){

args[n].in=(double)(n+1);

if (pthread_create(&threads[n], NULL,

worker, &args[n])){ ... };

}

for(n=0; n<NUM_THREADS; n++){

if (pthread_join(threads[n],NULL)==0)

printf("n=%d, in=%g, out=%g\n",

n,args[n].in,args[n].out);

}

.....

}

Method 1 can be also used to pass complex arguments (structs,

unions) and to receive results from the thread worker function.

L.J. Opalski, slides for Operating Systems courses
7

Passing parameters to threads (2)

▪ Method 2. Passing an argument arg via cast to void * . The worker has to do

cast in the opposite direction into the arg type.

Warning: the method works correctly only if sizeof(arg)<=sizeof(void *)

int param[NUM_THREADS]; // array of thread arguments

void * worker(void *argp){

int arg=(int)argp; // copying argument to arg

printf("arg=%d\n",arg);

return NULL;

}

int main(...){

pthread_t threads[NUM_THREADS];

.....

assert((sizeof(int)<=sizeof(void *));

for(int n=0; n<NUM_THREADS; n++){

param[n]=n;

rc = pthread_create(&threads[n], NULL,

worker, (void *)n);

}

...

}

L.J. Opalski, slides for Operating Systems courses
8

Passing parameters to threads - bad practice

▪ WARNING: incorrect technique: a naïve passing address of a simple

variable (here: int), that is modified within lifetime of a thread.

void * worker(void *argp){

int arg=*((int *)argp); // copying argument to arg

printf("arg=%d\n",arg);

return NULL;

}

int main(...){

pthread_t threads[NUM_THREADS];

int arg;

.....

for(n=0; n<NUM_THREADS; n++){

arg=n;

rc = pthread_create(&threads[n], NULL,

worker, (void *) &arg);

}

...

}

L.J. Opalski, slides for Operating Systems courses
9

Ending thread execution

A thread ends when:

▪ this thread (working) function makes return

▪ the thread function calls pthread_exit:

void pthread_exit(void *status);

Note: status should be NULL or be an address of a memory location

which is accessible by a thread which is to receive the memory location via
pthread_join() call.

▪ the thread was cancelled via a call to pthread_cancel:

void pthread_cancel(pthread_t thread);

▪ The whole process is terminated. This can happen when

▪ the main thread (main() function) of a POSIX process returns or

▪ exit() function is called by any thread of the process

▪ a signal delivery (or abort()call) resulted in process termination

.

L.J. Opalski, slides for Operating Systems courses
10

Waiting for a thread termination

▪ A thread of a process can wait for another thread of the same process:

▪ if it knows TID of the awaited thread and

▪ the awaited thread is not detached

int pthread_join(

pthread_t tid, // TID of the awaited thread

void **status // address of the pointer to be

// returned (NULL → status is discarded)
); // returns 0 on success;

// ESRCH – if the thread does not exist,

// EINVAL – when the thread is detached (so cannot be joined).

Making thread detached:
▪ Using detachstate attribute when creating a thread.

▪ Calling (by any thread of the processes):
int pthread_detach(

thread_t tid // TID of the thread to be detached

);

L.J. Opalski, slides for Operating Systems courses
11

Return value of a thread function
▪ Thread function returns address of return value, so the address should be

valid after the function returns. An alternative way: pthread_exit() call.

Correct Incorrect

void *thread1(void *arg){

int i=*((int *)arg), *ip;

i++;

ip = malloc(sizeof(int));

if (ip) *ip = i;

else { . . . } // failure

return (void *)ip;

}

void *thread2(void *arg){

static int i=*((int *)arg);

i++;

return (void *)&i;

}

void *thread3(void *arg){

int i=*((int *)arg);

i++;

return (void *)&i;

}

▪ It is easy (and safe) to retrieve data produced by a thread via a global value or

via a struct argument - which keeps both input as output data items. The

beginners are advised to do so, and return NULL from thread function

L.J. Opalski, slides for Operating Systems courses
12

Thread cancellation

▪ The thread cancellation mechanism allows a thread to terminate the execution of

any other thread in the process in a controlled manner.

▪ The cancelability state of a thread determines the action taken upon receipt of a

cancellation. The state has two components:

▪ cancelability (set set to PTHREAD_CANCEL_ENABLE, by default)

• can be changed to PTHREAD_CANCEL_ DISABLE by
pthread_setcancelstate function call. In effect cancellation requests

are held pending.

▪ cancelability type (set to PTHREAD_CANCEL_ DEFERRED in all newly

created threads)

• When cancelability is enabled and the cancelability type is

PTHREAD_CANCEL_ DEFERRED cancellation requests are held

pending until a cancellation point is reached.

• When cancelability is enabled and the cancelability type is

PTHREAD_CANCEL_ ASYNCHRONOUS, new or pending cancellation

requests may be acted upon at any time. Only async-cancel-safe

functions should be used by a thread with asynchronous cancelability.

• Change of cancelability type: by pthread_setcanceltype function call.

L.J. Opalski, slides for Operating Systems courses
13

Cancellation points (POSIX_std_1003.1-2017)
The following functions are required to be cancellation points (see pthreads(7) for other):

Note: function pthread_testcancel() is used as cancellation point only

L.J. Opalski, slides for Operating Systems courses
14

Clean-up handlers

▪ Cancellation of a thread can lead to inconsistent application state

(semaphores, mutexes and conditionals) or memory leaks and resource

waste

▪ To release or free resources at cancellation or at the end of thread use stack

of clean-up handlers

• handlers are pushed on the stack with a call of

void pthread_cleanup_push(void (*handler)(void *), *arg)

• each handler is a one parameter (void*) function; when invoked, it will

be called with arg as its argument

▪ When a thread is cancelled or terminated via pthread_exit function call - the

routines in the thread’s list of cancellation cleanup handlers are invoked one

by one in LIFO sequence. Note: if the thread terminates with return in the

worker function – no cleanup handlers are invoked.

▪ A handler can be popped with

void pthread_cleanup_pop(int execute)

and it is also executed if execute!=0.

▪ A function that uses clean-up handlers and can always be safely cancelled is

called async-cancel safe.

L.J. Opalski, slides for Operating Systems courses
15

Thread synchronization with pthread_join

Example 2. A single-thread program to be converted to multi-threaded

#include <stdio.h>

int hello(void) { // to become thread worker fun. #1

printf(“Hello ");

return(0);

}

int world(void) {// to become thread worker fun. #2

printf("world");

return(0);

}

int main(int argc, char *argv[]) {

hello(); // the first word and space (“Hello ”)

world(); // the second word (“world”)

printf("\n"); // end of line

return(0);

}

L.J. Opalski, slides for Operating Systems courses
16

Example – continuation

▪ A multi-threaded version of the example program

#include <pthread.h>

#include <stdio.h>

#include <string.h>

#include <unistd.h>

#include <assert.h>

void *hello_thread(void *arg) {/* worker fun. #1 */

printf(“Hello ");/* the first worker doesn’t wait */

return NULL;

}

void *world_thread(void *arg) {/* worker fun. #1 */

int n;

pthread_t tid = (pthread_t) arg;

/* waiting for the thread with given TID */

if (n=pthread_join(tid, NULL)) { ... }

printf("world");

pthread_exit(NULL); // or just return NULL;

}

L.J. Opalski, slides for Operating Systems courses
17

Example – continuation

▪ A multi-threaded version of the example program

int main(int argc, char *argv[]){

int n;

pthread_t htid, wtid;

assert(sizeof(pthread_t)<=sizeof(void *));

/* spawning the worker thread #1 */

if(n=pthread_create(&htid,NULL,hello_thread,NULL)){

.. .

}

/* spawning the worker thread #2, passing TID of the worker #1*/

if(n=pthread_create(&wtid,NULL,world_thread,(void *)htid)){

. . .

}

/* waiting for termination of the worker #2 */

if(n=pthread_join(wtid,NULL)){

...

}

printf("\n");

return(0);

}

L.J. Opalski, slides for Operating Systems courses
18

Preventing concurrent memory access

▪ The example program #2 below is naively meant to increment and

decrement cnt variable n times; in fact final cnt value cannot be predicted

▪ Failure results from concurrent non-atomic modification of cnt variable

int cnt, n=10000;

void *worker(void *arg){

int i, v;

for(i=0; i<n; i++){ // cnt variable is modified by *((int *)arg) , i.e. 1 or -1

v=cnt; // in each turn of the loop

printf(“TID %d: %d\n",pthread_self(),v+((int *)arg)[0]);

cnt=v+((int *)arg)[0];

}

return NULL;

}

int main(int argc, char *argv[]){

int inc=1, dec=-1;

pthread_t tid1, tid2;

if(pthread_create(&tid1,NULL,worker,&inc)){…} // do cnt+=n

if(pthread_create(&tid2,NULL,worker,&dec)){…} // do cnt-=n

if(pthread_join(tid1,NULL)) {…}

if(pthread_join(tid2,NULL)) {…}

fprintf(stderr,"n=%d, cnt=%d\n",n,cnt); // show final cnt value

return 0;

}

L.J. Opalski, slides for Operating Systems courses
19

Mutex

▪ Mutex - a synchronization object used to allow multiple threads to serialize their

access to shared data. The name derives from the capability it provides; namely,

mutual-exclusion. The thread that has locked a mutex becomes its owner and

remains the owner until that same thread unlocks the mutex.

▪ Basic mutex operations:

▪ Locking access to critical section

int pthread_mutex_lock(pthread_mutex_t ∗mp);// blocking

int pthread_mutex_trylock(pthread_mutex_t ∗mp);// non-bl.

▪ Unlocking access to critical section

int pthread_mutex_unlock(pthread_mutex_t ∗mp);

Pattern of use:

lock

// critical section: code that should access a shared variable in exclusive fashion

…..
unlock

L.J. Opalski, slides for Operating Systems courses
20

Mutex attributes

▪ Initialization of a mutex

int pthread_mutex_init (

pthread_mutex_t ∗mp,// ptr to mutex

const pthread_mutexattr_t ∗mattr);// ptr to attributes

▪ Initialization of an attributes structure with default values

int pthread_mutexattr_init(pthread_mutexattr_t ∗mattr) ;

For setting/getting individual attributes see man pthread_mutexattr_destroy.

▪ Available attributes are implementation specific. Linux mutex attribute pshared

determines if the mutex can be shared by processes or not. Default:NO

Funs: pthread_mutexattr_getpshared, pthread_mutexattr_setpshared

Mutex types: NORMAL mutex does not detect deadlock when locking locked

ERRORCHECK operations checked for validity (e.g. locking locked)

RECURSIVE multiple locking possible but require multiple unlocking

L.J. Opalski, slides for Operating Systems courses
21

Example 2 – a rework

▪ Re-work of example 2: modifications of shared variable cnt are mutex

protected now

int cnt, n;

pthread_mutex_t mtx=PTHREAD_MUTEX_INITIALIZER;// static

initializ.

void *worker(void *arg){

int i, v;

for(i=0; i<n; i++){

if(pthread_mutex_lock(&mtx)){. . .}

v=cnt;

printf(“TID %d: %d\n",pthread_self(),v+((int

*)arg)[0]);

cnt=v+((int *)arg)[0];

if(pthread_mutex_unlock(&blokada)){. . .}

}

return NULL;

}

L.J. Opalski, slides for Operating Systems courses
22

Reentrant and thread-safe functions

▪ Reentrant function - A function whose effect, when called by two or

more threads, is guaranteed to be as if the threads each executed the

function one after another in an undefined order, even if the actual

execution is interleaved.

▪ Thread-Safe - A function that may be safely invoked concurrently by

multiple threads. Each function defined in the System Interfaces volume

of IEEE Std 1003.1-2001 is thread-safe unless explicitly stated otherwise

(see man pthreads(7) for the list). Examples are any ‘‘pure’’ function, a

function which holds a mutex locked while it is accessing static storage,

or objects shared among threads.

L.J. Opalski, slides for Operating Systems courses
23

Threads and signals

▪ Signals originating outside a process are delivered to a process, so the action

taken for each signal is defined per process.

▪ For multi-thread process each signal handling is performed in a context of

some specific thread.

▪ For signals that resulted from a thread activity related exception (e.g. division

by 0, illegal memory access) the signal shall be generated for the thread that

caused the signal to be generated . For other signals causes the target thread

is selected among those which do not currently block this signal.

▪ pthread_kill() call requests that a specified signal be delivered to the

specified thread (i.e. it makes the signal to be handled in the context of the

given thread

int pthread_kill(pthread_t thread, int sig);

▪ Each thread has a “signal mask” that defines the set of signals currently

blocked from delivery to it. The signal mask for a thread shall be initialized from

that of its parent or creating thread, or from the corresponding thread in the
parent process if the thread was created as the result of a call to fork().

L.J. Opalski, slides for Operating Systems courses
24

Setting/getting thread signal mask

int pthread_sigmask(int how, const sigset_t *new,

sigset_t *old);

how==SIG_SETMASK – to set the whole mask

how==SIG_BLOCK - to add selected signals to the thread

signal blocking mask

how==SIG_UNBLOCK – to remove selected signals from

the thread signal blocking mask

Remarks

▪ Signal masks of threads of one process can differ, but signal

dispositions/handlers are shared. Therefore masks determine which

thread can be interrupted to handle signal and which threads will not be

interrupted (with related side-effects).

▪ Signals related to hardware exceptions (SIGSEGV, SIGILL, SIGFPE)

interrupt threads, which triggered the signal delivery. Other signals can

interrupt any thread, which does not block that signal.

Warning:
Use of sigprocmask() (which is used to set a mask in a single-thread

program) in a multi-thread program causes unspecified behavior

L.J. Opalski, slides for Operating Systems courses
25

Other useful thread-related functions

pthread_t pthread_self(void); // returns caller TID

int pthread_equal(pthread_t tid1, pthread_t tid2);

// compares 2 TIDs

int pthread_once(

pthread_once_t *once_control,

void (*init_routine)(void)

);

// The first call to pthread_once() by any thread in a process, with a given

// once_control, shall call the init_routine() with no arguments.

// Subsequent calls of pthread_once() with the same once_control shall

// not call the init_routine . The datum pointed at by once_control

// should be initialized statically before pthread_once() use:

pthread_once_t once_control_dat = PTHREAD_ONCE_INIT;

once_control=&once_control_dat;

L.J. Opalski, slides for Operating Systems courses
26

Atomicity of operations

▪ Thread safe function or code can be executed simultaneously in two or

more threads without spurious results

▪ Thread must treat not safe functions and code as critical section and

synchronize access explicitly.

▪ functions that:

• write to static buffers

• modify process specific resources (like CWD)

are not thread safe

▪ access to shared (not private) data in program is not thread safe

▪ Most of library functions that are not thread safe have thread safe
alternative (_r)

▪ Operations on streams are atomic i.e. many threads do not mix data sent
or received from the stream in single function call (e.g. printf)

