POSIX threads basics

Note: the slides do not cover thread-specific data,
thread scheduling, RT threads

Last modification date: 16.11.2020

L.J. Opalski, slides for Operating Systems courses

POSIX definitions

" Process- An address space with one or more threads executing within that address
space, and the required system resources for those threads/ Many of the system
resources are shared among all of the threads within a process. These include the
process ID, the parent process ID, process group ID, session membership, real,
effective, and saved set-user-1D, real, effective, and saved set-group-1D, supplementary

group.

®" Thread - A single flow of control within a process. Each thread has its own thread
ID (TID), scheduling priority and policy, errno value, thread-specific key/value
bindings, and the required system resources to support a flow of control. Anything
whose address may be determined by a thread, including but not limited to static
variables, storage obtained viamalloc (), directly addressable storage obtained
through implementation-defined functions, and automatic variables, are accessible to all
threads in the same process.

" Multithreaded program — a program whose executable file was produced by compiling
with c99 using the flags output by getconf POSIX V7 THREADS CFLAGS, and
linking with c99 using the flags output by getconf POSIX V7 THREADS LDFLAGS
and the -1 pthread, or by compiling and linking using a non- -standard utlllty with

equivalent flags. Execution of a multi-threaded program initially creates a single-
threaded process; the process can create additional threads using
pthread create () or SIGEV_THREAD noatifications.

5 L.J. Opalski, slides for Operating Systems courses

POSIX threads (P-threads) API

<pthread.h> pthread , PTHREAD _

Thread creation:

int pthread create (pthread t *thread, //returns TID via *thread
const pthread attr t *attr, //ptrto thread attributes structure
void * (*start routine) (void *), // working function
void *arg // working function argument (can be NULL)

®), /l'returns O on success non-zero on error. According to Linux man pthreads

“the pthreads functions do not set errno”. Yet currently errno is assigned the
pthread function error code value;

The new thread starts executing by invoking start routine (arg) .

Thread attributes can be set only at creation time, except detach state. A single
attributes object (struct pthread attr t)can be used in multiple
simultaneous calls to pthread create() .

3 L.J. Opalski, slides for Operating Systems courses

Attributes

" The attribute structure has to be initialized prior to use:
int pthread attr init(pthread attr t *tattr);

" Getting and setting individual attributes

int pthread attr getXXX(pthread attr t *tattr,...);
int pthread attr setXXX(pthread attr t *tattr,...);

Attribute (XXX)

detachstate PTHREAD CREATE JOINABLE Default, joinable state

PTHREAD CREATE DETACHED Non-joinable (detach) state

scope PTHREAD SCOPE_PROCESS Thread competes for resources
with same process threads
PTHREAD SCOPE_SYSTEM ... competes with all threads

Other attributes (see pthread_attr_init(3)):
® inheritsched, schedpolicy, schedparam

® stack, guardsize,

The attribute structure can be invalidated after use;:
int pthread attr destroy(pthread attr t *tattr);

4 L.J. Opalski, slides for Operating Systems courses

Passing parameters to threads (1)

" Method 1. each thread gets address of its specific parameter value.

Correct (safe) technique.
Example: passing a simple variable (here: int)

(void *argp) {
int arg=*(int *)argp; // copying argument to arg

printf ("arg=%d\n", arqg) ;

volid *

}

int main(...) {
pthread t threads[NUM THREADS];
// array of thread arguments

int param[NUM THREADS];

for (n=0; n<NUM THREADS; n++) {
param[n]=n;
rc = pthread create(&threads[n], NULL,

, (void *) é¶m([n]);

L.J. Opalski, slides for Operating Systems courses

Passing parameters to threads (1 — cont.)

Method 1 can be also used to pass complex arguments (structs,
unions) and to receive results from the thread worker function.

struct mystruct{ double in; double out;}; //in/out structure
void * (void *argp) {/
struct mystruct *inout=*((struct mystruct *)argp):;
inout->out=sqgrt (i1nout->1in) ;
printf ("in=%g, out=%g\n",inout->in, inout->out);
return NULL;
}
int main(...) {
pthread t threads[NUM THREADS];
struct mystruct args[MAXPTHREADS];
for (n=0; n<NUM THREADS; n++) {
args[n] .in=(double) (n+l);
if (pthread create(&threads([n], NULL,
, &args[n])){ ... };
}
for (n=0; n<NUM THREADS; n++) {
if (pthread join(threads[n],NULL)==0)
printf ("n=%d, in=%g, out=%g\n",
n,args[n)].in,args[n] .out);

L.J. Opalski, slides for Operating Systems courses

Passing parameters to threads (2)

" Method 2. Passing an argument arg via cast to void *. The worker has to do
cast in the opposite direction into the arg type.

Warning: the method works correctly only if sizeof (arg)<=sizeof (void *)

int param[NUM THREADS]; // array of thread arguments
void * (void *argp) {
int arg=(int)argp; // copying argument to arg
printf ("arg=%d\n", arg) ;
return NULL;
}

int main(...) {
pthread t threads[NUM THREADS];

assert ((sizeof (int)<=sizeof (void *));
for (int n=0; n<NUM THREADS; n++) {
param[n]=n;
rc = pthread create(&threads[n], NULL,
, (void *)n);

} 7 L.J. Opalski, slides for Operating Systems courses

Passing parameters to threads - bad practice

" WARNING: incorrect technique: a naive passing address of a simple
variable (here: int), that is modified within lifetime of a thread.

void * (void *argp) {
int arg=*((int *)argp); /I copying argument to arg

printf ("arg=%d\n", arqg) ;
return NULL;

}

int main(...) {
pthread t threads[NUM THREADS];
int arg;

for (n=0; n<NUM THREADS; n++) {

arg=n;
rc = pthread create(&threads[n], NULL,

(void *) &arqg):;

4

L.J. Opalski, slides for Operating Systems courses

Ending thread execution

A thread ends when:
" this thread (working) function makes return
" the thread function calls pthread exit:
void pthread exit(void *status);

Note: status should be NULL or be an address of a memory location

which is accessible by a thread which is to receive the memory location via
pthread join() call

" the thread was cancelled via a call to pthread cancel:
void pthread cancel (pthread t thread);

" The whole process is terminated. This can happen when
» the main thread (main () function) of a POSIX process returns or
= exit () function is called by any thread of the process
= asignal delivery (or abort () call) resulted in process termination

9 L.J. Opalski, slides for Operating Systems courses

Waiting for a thread termination

" A thread of a process can wait for another thread of the same process:
= if it knows TID of the awaited thread and
= the awaited thread is not detached

int pthread join(
pthread t tid, // TID of the awaited thread
void **status // address of the pointer to be

Il returned (NULL - status is discarded)
) ; [/ returns O on success;

/[ESRCH - if the thread does not exist,
/[EINVAL — when the thread is detached (so cannot be joined).

Making thread detached:
® Using detachstate attribute when creating a thread.

® Calling (by any thread of the processes):
int pthread detach (
thread t tid // TID of the thread to be detached

) ;

10 L.J. Opalski, slides for Operating Systems courses

Return value of a thread function

® Thread function returns address of return value, so the address should be
valid after the function returns. An alternative way: pthread exit() call.

Correct

Incorrect

void *threadl (void *argqg) {
int i=*((int *)arg), *ip;
i++;
ip = malloc(sizeof (int)) ;
if (ip) *ip = i;
else { } // failure
return (void *)ip;

}

void *thread2 (void *argqg) {
static int i=*((int *)argqg);
i++;
return (void *) &i;

}

void *thread3(void *argqg)
int i=*((int *)argqg);
i++;
return (void *) &i;

—~—

" |t is easy (and safe) to retrieve data produced by a thread via a global value or
via a struct argument - which keeps both input as output data items. The
beginners are advised to do so, and return NULL from thread function

11

L.J. Opalski, slides for Operating Systems courses

hread cancellation

® The thread cancellation mechanism allows a thread to terminate the execution of
any other thread in the process in a controlled manner.

" The cancelability state of a thread determines the action taken upon receipt of a
cancellation. The state has two components:

= cancelability (set setto PTHREAD CANCEL_ENABLE, by default)

- can be changed to PTHREAD CANCEL_DISABLE by
pthread setcancelstate function call. In effect cancellation requests
are held pending.

= cancelability type (setto PTHREAD CANCEL_DEFERRED in all newly
created threads)

- When cancelability is enabled and the cancelability type is
PTHREAD CANCEL_DEFERRED cancellation requests are held
pending until a cancellation point is reached.

- When cancelability is enabled and the cancelability type is
PTHREAD CANCEL_ASYNCHRONOUS, new or pending cancellation
requests may be acted upon at any time. Only async-cancel-safe
functions should be used by a thread with asynchronous cancelability.

- Change of cancelability type: by pthread setcanceltype function call.

12 L.J. Opalski, slides for Operating Systems courses

Cancellation points (POSIX std 1003.1-2017)

The following functions are required to be cancellation points (see pthreads(7) for other):

accept () nanosleep () select (')
aio_suspend () open () sem_timedwait ()
clock_nanosleep () openat () sem_wait ()
close() pause() send ()
connect() poll () sendmsg ()
creat () pread () sendto()
fentl()t pselect () sigsuspend ()
fdatasync() pthread_cond_timedwait() sigtimedwait ()
fsync() pthread_cond_wait () sigwait()
getmsg () pthread_join () sigwaitinfo()
getpmsg () pthread_testcancel () sleep ()

lockf()+t putmsg() tedrain ()
maq_receive () putpmsg() wait ()
mq_send () pwrite() waitid ()
mq_timedreceive() read () waitpid ()
maq_timedsend () readv () write()
msgreo () reco() writev()
msgsnd () recofrom ()

msync() recomsg ()

Note: function pthread_testcancel() is used as cancellation point only

13 L.J. Opalski, slides for Operating Systems courses

Clean-up handlers

Cancellation of a thread can lead to inconsistent application state
(semaphores, mutexes and conditionals) or memory leaks and resource
waste

To release or free resources at cancellation or at the end of thread use stack
of clean-up handlers

- handlers are pushed on the stack with a call of
void pthread cleanup push(void (*handler) (void *), *argq)

- each handler is a one parameter (void*) function; when invoked, it will
be called with arg as its argument

When a thread is cancelled or terminated via pthread_exit function call - the
routines in the thread’s list of cancellation cleanup handlers are invoked one
by one in LIFO sequence. Note: if the thread terminates with return in the
worker function — no cleanup handlers are invoked.

A handler can be popped with
void pthread cleanup pop(int execute)
and it is also executed if execute !'=0.

A function that uses clean-up handlers and can always be safely cancelled is
called async-cancel safe.

14 L.J. Opalski, slides for Operating Systems courses

Thread synchronization with pthread join

Example 2. A single-thread program to be converted to multi-threaded

#include <stdio.h>

int (void) { // to become thread worker fun. #1
printf (“Hello ");
return (0) ;

int (void) {// to become thread worker fun. #2
printf ("world");
return(0);

}

int main(int argc, char *argv[]) {
() // the first word and space (“Hello ”)
()7 // the second word (“world”)

printf ("\n"); // end of line
return(0);

15 L.J. Opalski, slides for Operating Systems courses

Example — continuation

® A multi-threaded version of the example program

#include <pthread.h>

#include <stdio.h>

#include <string.h>

#include <unistd.h>

#include <assert.h>

void * (void *arg) {/* worker fun. #1 */
printf (YHello ");/* the first worker doesn’t wait */
return NULL;

}

void * (void *arg) {/* worker fun. #1 */
int n;
pthread t tid = (pthread t) arg;

/* waiting for the thread with given TID */
if (n=pthread join(tid, NULL)) { ... }

printf ("world") ;
pthread exit(NULL); //orjust return NULL;

16 L.J. Opalski, slides for Operating Systems courses

Example — continuation

® A multi-threaded version of the example program

int main(int argc, char *argv([]) {

/*

/*

/*

int n;

pthread t htid, wtid;
assert (sizeof (pthread t)<=sizeof(void *));
spawning the worker thread #1 */

if (n=pthread create (&¢hti

}
spawning the worker thread #2, passing TID of the rker #1*/

if (n=pthread create (& , NULL, , (void *)htid)) {

}

waiting for terminati/jon of the worker #2 */
if (n=pthread join (, NULL)) {

}
printf ("\n") ;
return (0) ;

L J. ﬁp:\lel{i, slides for ﬁpnrating Q\J/ctnmc courses

17

Preventing concurrent memory access

" The example program #2 below is naively meant to increment and
decrement variable n times; in fact final value cannot be predicted
® Failure results from concurrent non-atomic modification of variable

int
void *
int 1,

}

, n=10000;
(void *arg) {
N

for (i=0; i<n; 1i++) {// variable is modified by * ((int *)arg) ,i.e.lor-1

}

v= ; I/ in each turn of the loop
printf (“TID %d: %d\n",pthread self (),v+((int *)arg) [0]);
=v+ ((int *)arg) [0];

return NULL;

int main (int argc, char *argv([]) {
int inc=1, dec=-1;
pthread t tidl, tidZ;

.} /ldo cnt+=n
.} /ldo cnt-=n

if (pthread create(&tidl, NULL, , &1inc))
if (pthread create(&tid2, NULL, , &dec))
if (pthread join(tidl,NULL)) {..}

if (pthread join(tidZ2,NULL)) {..}

fprintf (stderr, "n=%d, cnt=%d\n",n,cnt); //show final value
return 0O;

{.
{.

18 L.J. Opalski, slides for Operating Systems courses

Mutex

" Mutex - a synchronization object used to allow multiple threads to serialize their
access to shared data. The name derives from the capability it provides; namely,
mutual-exclusion. The thread that has locked a mutex becomes its owner and
remains the owner until that same thread unlocks the mutex.

® Basic mutex operations:
= Locking access to critical section
int pthread mutex lock (pthread mutex t smp);// blocking
int pthread mutex trylock (pthread mutex t #mp);// non-bl.
= Unlocking access to critical section
int pthread mutex unlock (pthread mutex t #mp)

Pattern of use:

lock
/I critical section: code that should access a shared variable in exclusive fashion

19 L.J. Opalski, slides for Operating Systems courses

Mutex attributes

" Initialization of a mutex
int pthread mutex init (
pthread mutex t *mp,// ptr to mutex
const pthread mutexattr t smattr);// ptr to attributes

" Initialization of an attributes structure with default values
int pthread mutexattr init(pthread mutexattr t smattr) ;

For setting/getting individual attributes see man pthread mutexattr destroy.

" Available attributes are implementation specific. Linux mutex attribute pshared
determines if the mutex can be shared by processes or not. Default:NO

Funs: pthread mutexattr getpshared, pthread mutexattr setpshared
Mutex types: NORMAL mutex does not detect deadlock when locking locked
ERRORCHECK operations checked for validity (e.g. locking locked)

RECURSIVE multiple locking possible but require multiple unlocking

20 L.J. Opalski, slides for Operating Systems courses

Example 2 — a rework

" Re-work of example 2: modifications of shared variable cnt are mutex
protected now

int cnt, n;
pthread mutex t mtx=PTHREAD MUTEX INITIALIZER;// static
initializ.
void *worker (void *arg) {
int 1, v;
for (i=0; i<n; i++) {
if (pthread mutex lock(&mtx)){. . .}
v=cnt;
printf (“TID %d: %d\n",pthread self () ,v+((int
*)arg) [0]) ;
cnt=v+ ((int *)arg) [0];
if (pthread mutex unlock(&blokada)){. . .}

}
return NULL;

21 L.J. Opalski, slides for Operating Systems courses

Reentrant and thread-safe functions

" Reentrant function - A function whose effect, when called by two or
more threads, is guaranteed to be as if the threads each executed the
function one after another in an undefined order, even if the actual
execution is interleaved.

" Thread-Safe - A function that may be safely invoked concurrently by
multiple threads. Each function defined in the System Interfaces volume
of IEEE Std 1003.1-2001 is thread-safe unless explicitly stated otherwise
(see man pthreads(7) for the list). Examples are any “pure” function, a
function which holds a mutex locked while it is accessing static storage,
or objects shared among threads.

29 L.J. Opalski, slides for Operating Systems courses

hreads and signals

® Signals originating outside a process are delivered to a process, so the action
taken for each signal is defined per process.

" For multi-thread process each signal handling is performed in a context of
some specific thread.

" For signals that resulted from a thread activity related exception (e.g. division
by 0, illegal memory access) the signal shall be generated for the thread that
caused the signal to be generated . For other signals causes the target thread
IS selected among those which do not currently block this signal.

" pthread kill() call requests that a specified signal be delivered to the

specified thread (i.e. it makes the signal to be handled in the context of the
given thread

int pthread kill (pthread t thread, int sig);

® Each thread has a “signal mask” that defines the set of signals currently
blocked from delivery to it. The signal mask for a thread shall be initialized from
that of its parent or creating thread, or from the corresponding thread in the
parent process if the thread was created as the result of a call to fork () .

23 L.J. Opalski, slides for Operating Systems courses

Setting/getting thread signal mask

int pthread sigmask(int how, const sigset t *new,
sigset t *old);
how==SIG_SETMASK - to set the whole mask
how==SIG_BLOCK - to add selected signals to the thread
signal blocking mask
how==SIG _UNBLOCK - to remove selected signals from
the thread signal blocking mask
Remarks
® Signal masks of threads of one process can differ, but signal
dispositions/handlers are shared. Therefore masks determine which
thread can be interrupted to handle signal and which threads will not be
interrupted (with related side-effects).
® Signals related to hardware exceptions (SIGSEGV, SIGILL, SIGFPE)
interrupt threads, which triggered the signal delivery. Other signals can
interrupt any thread, which does not block that signal.

Warning:
Use of sigprocmask () (which is used to set a mask in a single-thread
program) in a multi-thread program causes unspecified behavior

24 L.J. Opalski, slides for Operating Systems courses

Other useful thread-related functions

pthread t pthread self (void) ; //returns caller TID

int pthread equal (pthread t tidl, pthread t tid2);
/[compares 2 TIDs

int pthread once (
pthread once t *once control,
void (*init routine) (void)

) ;

/Il The first call to pthread once () by any thread in a process, with a given
/I once control, shall call the init routine() with no arguments.

/I Subsequent calls of pthread once () with the same once control shall
/I not call the init routine . The datum pointed at by once control

// should be initialized statically before pthread once() use:

pthread once t once control dat = PTHREAD ONCE INIT;
once control=&once control dat;

o5 L.J. Opalski, slides for Operating Systems courses

Atomicity of operations

" Thread safe function or code can be executed simultaneously in two or
more threads without spurious results

® Thread must treat not safe functions and code as critical section and
synchronize access explicitly.

= functions that:
- write to static buffers
- modify process specific resources (like CWD)
are not thread safe
= access to shared (not private) data in program is not thread safe

= Most of library functions that are not thread safe have thread safe
alternative (_ r)

® Operations on streams are atomic i.e. many threads do not mix data sent
or received from the stream in single function call (e.g. printf)

26 L.J. Opalski, slides for Operating Systems courses

