
Adaptation of Silberschatz, Galvin, Gagne slides for the textbook

„Applied Operating Systems Concepts”
1

Threads

▪ Thread concept

▪ Multicore Programming

▪ Multithreading Models

▪ Thread Libraries

▪ Implicit Threading

▪ Threading Issues

Adaptation of Silberschatz, Galvin, Gagne slides for the textbook

„Applied Operating Systems Concepts”
2

Basics

Each process has to get access to system resources necessary to perform

its mission. To accomplish the mission the process can use one or more

threads of execution. The threads share access to process-available

resources, but can also have privately allocated resources.

L.J. Opalski, slides for „Operating Systems I” course

Adaptation of Silberschatz, Galvin, Gagne slides for the textbook

„Applied Operating Systems Concepts”
3

Benefits of multi-threading
▪ Responsiveness – may allow continued execution if part of process is

blocked; especially important for user interfaces

▪ Process resource sharing – threads share resources of process, easier than

shared memory or message passing

▪ Economy – cheaper than process creation, thread switching lower overhead

than context switching

Scalability – process can take advantage of multiprocessor architectures to

perform parallel thread activities concurrently

Concurrent execution on single-core system:

Parallelism on a multi-core system:

L.J. Opalski, slides for „Operating Systems I” course

Concurrency

supports more

than one task

making progress

Parallelism implies a system can

perform more than one task

simultaneously

Adaptation of Silberschatz, Galvin, Gagne slides for the textbook

„Applied Operating Systems Concepts”
4

Amdahl’s law

▪ Identifies performance gains from adding additional cores to an

application that has both serial and parallel components

▪ S is serial portion

▪ N processing cores

▪ That is, if application is 75% parallel / 25% serial, moving from 1 to 2

cores results in speedup of 1.6 times

▪ As N approaches infinity, speedup approaches 1 / S

Serial portion of an application has disproportionate effect on

performance gained by adding additional cores

▪ But does the law take into account contemporary multicore systems?

L.J. Opalski, slides for „Operating Systems I” course

Adaptation of Silberschatz, Galvin, Gagne slides for the textbook

„Applied Operating Systems Concepts”
5

Multicore programming

▪ Types of parallelism

▪ Data parallelism – distributes subsets of the same data across multiple

cores, same operation on each

▪ Task parallelism – distributing threads across cores, each thread

performing unique operation

▪ As # of threads grows, so does architectural support for threading. E.g. CPUs

have cores as well as hardware threads (Oracle SPARC T4: 8 cores, and 8

hardware threads per core)

▪ Multicore or multiprocessor systems putting pressure on programmers,

challenges include:

▪ Dividing activities

▪ Balance

▪ Data splitting

▪ Data dependency

▪ Testing and debugging

L.J. Opalski, slides for „Operating Systems I” course

Adaptation of Silberschatz, Galvin, Gagne slides for the textbook

„Applied Operating Systems Concepts”
6

User Threads and Kernel Threads

▪ User threads - management done by user-level threads library.

Examples:

▪ POSIX threads (Pthreads)

▪ Windows threads

▪ Java threads

▪ Kernel threads - virtually all general purpose operating systems,

including:

▪ Windows

▪ Solaris

▪ Linux

▪ Tru64 UNIX

▪ Mac OS X

L.J. Opalski, slides for „Operating Systems I” course

Adaptation of Silberschatz, Galvin, Gagne slides for the textbook

„Applied Operating Systems Concepts”
7

Multithreading Models

▪ Many-to-One

▪ One-to-One

▪ Many-to-Many

Adaptation of Silberschatz, Galvin, Gagne slides for the textbook

„Applied Operating Systems Concepts”
8

Many-to-One

▪ Many user-level threads mapped to single

kernel thread

▪ One thread blocking causes all to block

▪ Multiple threads may not run in parallel on

muticore system because only one may

be in kernel at a time

▪ Few systems currently use this model

▪ Examples:

▪ Solaris Green Threads

▪ GNU Portable Threads

Adaptation of Silberschatz, Galvin, Gagne slides for the textbook

„Applied Operating Systems Concepts”
9

One-to-One

▪ Each user-level thread maps to kernel thread

▪ Creating a user-level thread creates a kernel thread

▪ More concurrency than many-to-one

▪ Number of threads per process sometimes restricted

due to overhead

▪ Examples

▪ Windows

▪ Linux

▪ Solaris 9 and later

Adaptation of Silberschatz, Galvin, Gagne slides for the textbook

„Applied Operating Systems Concepts”
10

Many-to-Many Model

▪ Allows many user level threads to be

mapped to many kernel threads

▪ Allows the operating system to create

a sufficient number of kernel threads

▪ Solaris prior to version 9

▪ Windows with the ThreadFiber

package

Adaptation of Silberschatz, Galvin, Gagne slides for the textbook

„Applied Operating Systems Concepts”
11

Two-level Model

▪ Similar to M:M, except that it allows a user thread to be

bound to kernel thread

▪ Examples

▪ IRIX

▪ HP-UX

▪ Tru64 UNIX

▪ Solaris 8 and earlier

Adaptation of Silberschatz, Galvin, Gagne slides for the textbook

„Applied Operating Systems Concepts”
12

Thread Libraries

▪ Thread library provides programmer with API for creating

and managing threads

▪ Two primary ways of implementing thread library

▪ Library entirely in user space

▪ Kernel-level library supported by the OS

Adaptation of Silberschatz, Galvin, Gagne slides for the textbook

„Applied Operating Systems Concepts”
13

Pthreads

▪ May be provided either as user-level or kernel-level

▪ A POSIX standard (IEEE 1003.1c) API for thread creation and

synchronization

▪ Specification, not implementation

▪ API specifies behavior of the thread library, implementation is up

to development of the library

▪ Common in UNIX operating systems (Solaris, Linux, Mac OS X)

Adaptation of Silberschatz, Galvin, Gagne slides for the textbook

„Applied Operating Systems Concepts”
14

Pthreads - example
#include <pthread.h>

#include <stdio.h>

int sum; // shared variable

void *runner(void *param) {// worker function

int i, upper = *((int *)(param));

sum = 0;

if (upper > 0) {

for (i = 1; i <= upper; i++) sum += i;

}

pthread_exit(0);

}

int main(int argc, char *argv[]){

pthread_t tid; // thread identifier (TID)

pthread_attr_t attr; // thread attributes

int ret, Param;

if (argc != 2) {

fprintf(stderr,“Usage: %s arg",argv[0]); exit(1);

}

Param=atoi(argv[1]);

pthread_attr_init(&attr); // setting (def.) thread attributes

if((ret=pthread_create(&tid,&attr,runner,&Param)!=0){//create thread

perror("create error”); exit(3);

}

if((ret=pthread_join(tid,NULL))!=0){ // wait for thread termination

perror("join”); exit(4);

}

printf("sum = %d\n",sum); return 0;

}

L.J. Opalski, slides for „Operating Systems I” course

Adaptation of Silberschatz, Galvin, Gagne slides for the textbook

„Applied Operating Systems Concepts”
15

Microsoft Windows Threads

▪ Windows implements the Windows API – primary API for Win 98,

Win NT, Win 2000, Win XP, and Win 7

▪ Implements the one-to-one mapping, kernel-level

▪ Each thread contains

▪ A thread id

▪ Register set representing state of processor

▪ Separate user and kernel stacks for when thread runs in

user mode or kernel mode

▪ Private data storage area used by run-time libraries and

dynamic link libraries (DLLs)

▪ The register set, stacks, and private storage area are known as

the context of the thread

Adaptation of Silberschatz, Galvin, Gagne slides for the textbook

„Applied Operating Systems Concepts”
16

MsWin threads - example

#include <stdio.h>

#include <windows.h>

DWORD Sum; // shared variable

DWORD WINAPI Summation(PVOID Param) {// worker function

DWORD Upper = *(DWORD *)Param;

for (DWORD i = 0; i <= Upper; i++) Sum += i;

return 0;

}

int main(int argc, char *argv[]){

DWORD ThreadId;

HANDLE ThreadHandle;

int Param;

if (argc != 2) {// Argument control

fprintf(stderr, "Integer argument required\n"); return -1;

}

Param = atoi(argv[1]);

// thread creation

ThreadHandle = CreateThread(NULL, 0, Summation, &Param, 0, &ThreadId);

if (ThreadHandle != NULL) { // waiting for

WaitForSingleObject(ThreadHandle, INFINITE);// thread termination

CloseHandle(ThreadHandle);

printf("sum = %d\n",Sum);

}

return 0;

}

L.J. Opalski, slides for „Operating Systems I” course

Adaptation of Silberschatz, Galvin, Gagne slides for the textbook

„Applied Operating Systems Concepts”
17

Implicit Threading

▪ Growing in popularity as numbers of threads increase, program

correctness more difficult with explicit threads

▪ Creation and management of threads done by compilers and

run-time libraries rather than programmers

▪ Example implicit threading solutions

▪ Thread Pools

▪ OpenMP

▪ Grand Central Dispatch (Mac OS X and iOS operating

systems)

▪ Microsoft Threading Building Blocks (TBB),

▪ java.util.concurrent package

Adaptation of Silberschatz, Galvin, Gagne slides for the textbook

„Applied Operating Systems Concepts”
18

Thread Pools

▪ Create a number of threads in a pool where they await work

▪ Advantages:

▪ Usually slightly faster to service a request with an existing

thread than create a new thread

▪ Allows the number of threads in the application(s) to be

bound to the size of the pool

▪ Separating task to be performed from mechanics of

creating task allows different strategies for running task

• i.e.Tasks could be scheduled to run periodically

▪ Windows API supports thread pools.

Adaptation of Silberschatz, Galvin, Gagne slides for the textbook

„Applied Operating Systems Concepts”
19

OpenMP

▪ Set of compiler directives and an

API for C, C++, FORTRAN

▪ Provides support for parallel

programming in shared-memory

environments

▪ Identifies parallel regions –

blocks of code that can run in

parallel

#pragma omp parallel

Create as many threads as there are

cores

#pragma omp parallel for

for(i=0;i<N;i++) {

c[i] = a[i] + b[i];

}

Run for loop in parallel

Adaptation of Silberschatz, Galvin, Gagne slides for the textbook

„Applied Operating Systems Concepts”
20

Threading Issues

▪ Semantics of fork() and exec() system calls

▪ Signal handling

▪ Synchronous and asynchronous

▪ Thread cancellation of target thread

▪ Asynchronous or deferred

▪ Thread-local storage

▪ Scheduler Activations

Adaptation of Silberschatz, Galvin, Gagne slides for the textbook

„Applied Operating Systems Concepts”
21

Semantics of fork() and exec()

▪ Does fork()duplicate only the calling thread or all threads?

▪ Some UNIXes have two versions of fork

▪ POSIX requires that only the thread which called
fork()is duplicated

▪ exec() usually works as normal – replace the running

process including all threads

Adaptation of Silberschatz, Galvin, Gagne slides for the textbook

„Applied Operating Systems Concepts”
22

Signal Handling

▪ Signals are used in UNIX systems to notify a process that a

particular event has occurred.

▪ A signal handler is used to process signals

1. Signal is generated by particular event

2. Signal is delivered to a process

3. Signal is handled by one of two signal handlers:

a) default

b) user-defined

▪ Every signal has default handler that kernel runs when

handling signal

User-defined signal handler can override default

▪ For single-threaded, signal delivered to process

Adaptation of Silberschatz, Galvin, Gagne slides for the textbook

„Applied Operating Systems Concepts”
23

Signal Handling (Cont.)

Where should a signal be delivered for multi-threaded?

▪ Deliver the signal to the thread to which the signal applies

▪ Deliver the signal to every thread in the process

▪ Deliver the signal to certain threads in the process

▪ Assign a specific thread to receive all signals for the

process

Adaptation of Silberschatz, Galvin, Gagne slides for the textbook

„Applied Operating Systems Concepts”
24

Thread Cancellation

▪ Terminating a thread before it has finished

▪ Thread to be canceled is target thread

▪ Two general approaches:

▪ Asynchronous cancellation terminates the target thread

immediately

▪ Deferred cancellation allows the target thread to periodically

check if it should be cancelled

▪ Pthread code to create and cancel a thread:

Adaptation of Silberschatz, Galvin, Gagne slides for the textbook

„Applied Operating Systems Concepts”
25

Thread Cancellation (Cont.)

▪ Invoking thread cancellation requests cancellation, but actual cancellation

depends on thread state

▪ If thread has cancellation disabled, cancellation remains pending until

thread enables it

▪ Default type is deferred

▪ Cancellation only occurs when thread reaches cancellation point

• i.e. pthread_testcancel()

• then cleanup handler is invoked

Adaptation of Silberschatz, Galvin, Gagne slides for the textbook

„Applied Operating Systems Concepts”
26

Thread-Local Storage

▪ Thread-local storage (TLS) allows each thread to have its own

copy of data

▪ Useful when you do not have control over the thread creation

process (i.e., when using a thread pool)

▪ Different from local variables

▪ Local variables visible only during single function

invocation

▪ TLS visible across function invocations

▪ Similar to static data

▪ TLS is unique to each thread

Adaptation of Silberschatz, Galvin, Gagne slides for the textbook

„Applied Operating Systems Concepts”
27

Scheduler Activations

▪ Both M:M and Two-level models require

communication to maintain the appropriate

number of kernel threads allocated to the

application

▪ Typically use an intermediate data structure

between user and kernel threads – lightweight

process (LWP)

▪ Appears to be a virtual processor on which

process can schedule user thread to run

▪ Each LWP attached to kernel thread

▪ How many LWPs to create?

▪ Scheduler activations provide upcalls - a

communication mechanism from the kernel to

the upcall handler in the thread library

▪ This communication allows an application to

maintain the correct number of kernel threads

