" Thread concept

® Multicore Programming
" Multithreading Models
" Thread Libraries

" Implicit Threading

" Threading Issues

hreads

Adaptation of Silberschatz, Galvin, Gagne slides for the textbook
~Applied Operating Systems Concepts”

Basics

Each process has to get access to system resources necessary to perform
its mission. To accomplish the mission the process can use one or more
threads of execution. The threads share access to process-available
resources, but can also have privately allocated resources.

code data files code data files
registers stack registers ||| registers ||| registers
stack stack stack
thread —> <«— thread
single-threaded process multithreaded process

Adaptation of Silberschatz, Galvin, Gagne slides for the textbook
~Applied Operating Systems Concepts”

L.J. Opalski, slides for ,Operating Systems I” course

Benefits of multi-threading

" Responsiveness — may allow continued execution if part of process is
blocked; especially important for user interfaces

" Process resource sharing — threads share resources of process, easier than
shared memory or message passing

" Economy — cheaper than process creation, thread switching lower overhead
than context switching

0 Scalability — process can take advantage of multiprocessor architectures to
perform parallel thread activities concurrently

Concurrent execution on single-core system: Concurrency

| supports more
single core than one task

time ‘ making progress
Parallelism on a multi-core system:

||

coed | Tq | Tg | Ty | Tg | Ty | .o Parallelism implies a system can
perform more than one task
simultaneously

core 2 To Ty To Ty To

time

\ 4

Adaptation of Silberschatz, Galvin, Gagne slides for the textbook
~Applied Operating Systems Concepts”

L.J. Opalski, slides for ,Operating Systems I” course

Amdahl’s law

" |dentifies performance gains from adding additional cores to an
application that has both serial and parallel components

" S is serial portion

" N processing cores

speedup < —i5

" That is, if application is 75% parallel / 25% serial, moving from 1 to 2
cores results in speedup of 1.6 times

" As N approaches infinity, speedup approaches 1/ S

Serial portion of an application has disproportionate effect on
performance gained by adding additional cores

" But does the law take into account contemporary multicore systems?

Adaptation of Silberschatz, Galvin, Gagne slides for the textbook
~Applied Operating Systems Concepts”

L.J. Opalski, slides for ,Operating Systems I” course

Multicore programming

" Types of parallelism

= Data parallelism — distributes subsets of the same data across multiple
cores, same operation on each

» Task parallelism — distributing threads across cores, each thread
performing unique operation

" As # of threads grows, so does architectural support for threading. E.g. CPUs
have cores as well as hardware threads (Oracle SPARC T4: 8 cores, and 8
hardware threads per core)

" Multicore or multiprocessor systems putting pressure on programmers,
challenges include:

= Dividing activities

= Balance

= Data splitting

= Data dependency

= Testing and debugging

L.J. Opalski, slides for ,Operating Systems I’ course Adaptation of Silberschatz, Galvin, Gagne slides for the textbook

~2Applied Operating Systems Concepts”

User Threads and Kernel Threads

" User threads - management done by user-level threads library.
Examples:

» POSIX threads (Pthreads)
= Windows threads
= Java threads

" Kernel threads - virtually all general purpose operating systems,
including:

= Windows

= Solaris

= Linux

= Tru64 UNIX
= Mac OS X

L.J. Opalski, slides for ,Operating Systems I’ course Adaptation of Silberschatz, Galvin, Gagne slides for the textbook

~2Applied Operating Systems Concepts”

Multithreading Models
® Many-to-One
" One-to-One

" Many-to-Many

Adaptation of Silberschatz, Galvin, Gagne slides for the textbook
~Applied Operating Systems Concepts”

Many-to-One

Many user-level threads mapped to single
kernel thread

One thread blocking causes all to block

Multiple threads may not run in parallel on ; ;
muticore system because only one may S
be in kernel at a time

Few systems currently use this model

Examples:
= Solaris Green Threads
= GNU Portable Threads

<«— kernel thread

Adaptation of Silberschatz, Galvin, Gagne slides for the textbook
~Applied Operating Systems Concepts”

One-to-One

" Each user-level thread maps to kernel thread
" Creating a user-level thread creates a kernel thread
® More concurrency than many-to-one

" Number of threads per process sometimes restricted
due to overhead

" Examples <«— user thread
= Windows

= Linux
= Solaris 9 and later
<«— Kkernel thread

Adaptation of Silberschatz, Galvin, Gagne slides for the textbook
~Applied Operating Systems Concepts”

Many-to-Many Model

® Allows many user level threads to be
mapped to many kernel threads

® Allows the operating system to create
a sufficient number of kernel threads

® Solaris prior to version 9 ; ;

® Windows with the ThreadFiber ;

34— user thread
package

<«——kernel thread

Adaptation of Silberschatz, Galvin, Gagne slides for the textbook

10 ~2Applied Operating Systems Concepts”

Two-level Model

" Similar to M:M, except that it allows a user thread to be
bound to kernel thread

" Examples
= |RIX ; ; ;

= HP-UX
= Tru64 UNIX
= Solaris 8 and earlier

; ; <«— user thread

Adaptation of Silberschatz, Galvin, Gagne slides for the textbook

11 ~2Applied Operating Systems Concepts”

Thread Libraries

" Thread library provides programmer with API for creating
and managing threads

" Two primary ways of implementing thread library
= Library entirely in user space
= Kernel-level library supported by the OS

Adaptation of Silberschatz, Galvin, Gagne slides for the textbook

12 ~2Applied Operating Systems Concepts”

Pthreads

" May be provided either as user-level or kernel-level

" A POSIX standard (IEEE 1003.1c) API for thread creation and
synchronization

" Specification, not implementation

" API specifies behavior of the thread library, implementation is up
to development of the library

® Common in UNIX operating systems (Solaris, Linux, Mac OS X)

Adaptation of Silberschatz, Galvin, Gagne slides for the textbook

13 ~2Applied Operating Systems Concepts”

Pthreads - example

#include <pthread.h>

#include <stdio.h>

int sum; // shared variable

void *runner (void *param) {// worker function

int i, upper = *((int *) (param));
sum = 0;
if (upper > 0) {
for (i = 1; 1 <= upper; i++) sum += i;

}
pthread exit (0);
}
int main (int argc, char *argv[]) {
pthread t tid; // thread identifier (TID)
pthread attr t attr; // thread attributes
int ret, Param;
if (argc != 2) {
fprintf (stderr, “Usage: %s arg",argv[0]); exit(l);
}
Param=atoi (argv([1l]);
pthread attr init(sattr); // setting (def.) thread attributes
if ((ret=pthread create(&tid, &attr, runner, &Param) !=0) {//create thread

perror ("create error”); exit(3);
}
if ((ret=pthread join(tid,NULL)) !=0){ // wait for thread termination
perror ("join”); exit (4);

}

printf ("sum = %d\n",sum); return 0;

Adaptation of Silberschatz, Galvin, Gagne slides for the textbook

L.J. Opalski, slides for ,Operating Systems I” course 14
~2Applied Operating Systems Concepts”

Microsoft Windows Threads

" Windows implements the Windows API — primary API for Win 98,
Win NT, Win 2000, Win XP, and Win 7

" Implements the one-to-one mapping, kernel-level

® Each thread contains
= Athreadid
= Register set representing state of processor

= Separate user and kernel stacks for when thread runs in
user mode or kernel mode

* Private data storage area used by run-time libraries and
dynamic link libraries (DLLS)

" The reqister set, stacks, and private storage area are known as
the context of the thread

Adaptation of Silberschatz, Galvin, Gagne slides for the textbook

15 ~2Applied Operating Systems Concepts”

L.J. Opalski, slides for ,Operating Systems I” course

MsWin threads - example

#include <stdio.h>
#include <windows.h>
DWORD Sum; // shared wvariable
DWORD WINAPI Summation (PVOID Param) {// worker function
DWORD Upper = * (DWORD *)Param;
for (DWORD 1 = 0; 1 <= Upper; 1it+) Sum += 1i;
return 0;
}
int main (int argc, char *argv[]) {
DWORD ThreadId;
HANDLE ThreadHandle;
int Param;
if (argc !'= 2) {// Argument control
fprintf (stderr, "Integer argument required\n"); return -1;
}

Param = atoi(argv[l]);

// thread creation
ThreadHandle = CreateThread (NULL, 0, Summation, &Param, 0, &ThreadId);
if (ThreadHandle != NULL) { // waiting for
WaitForSingleObject (ThreadHandle, INFINITE);// thread termination
CloseHandle (ThreadHandle) ;
printf ("sum = %d\n", Sum) ;
}
return 0O;

}

Adaptation of Silberschatz, Galvin, Gagne slides for the textbook

16 ~2Applied Operating Systems Concepts”

Implicit Threading

" Growing in popularity as numbers of threads increase, program
correctness more difficult with explicit threads

" Creation and management of threads done by compilers and
run-time libraries rather than programmers

" Example implicit threading solutions
= Thread Pools
= OpenMP

= Grand Central Dispatch (Mac OS X and iOS operating
systems)
= Microsoft Threading Building Blocks (TBB),

= java.util.concurrent package

Adaptation of Silberschatz, Galvin, Gagne slides for the textbook

17 ~2Applied Operating Systems Concepts”

Thread Pools

® Create a number of threads in a pool where they await work

® Advantages:

= Usually slightly faster to service a request with an existing
thread than create a new thread

= Allows the number of threads in the application(s) to be
bound to the size of the pool

= Separating task to be performed from mechanics of
creating task allows different strategies for running task

- l.e.Tasks could be scheduled to run periodically

® Windows API supports thread pools.

Adaptation of Silberschatz, Galvin, Gagne slides for the textbook

18 »+Applied Operating Systems Concepts”

OpenMP

" Set of compiler directives and an
API for C, C++, FORTRAN

" Provides support for parallel
programming in shared-memory
environments

" |dentifies parallel regions —
blocks of code that can run in
parallel

#pragma omp parallel

Create as many threads as there are
cores

#pragma omp parallel for
for (i=0;i<N;i++) {

c[i] = a[i] + b[i];
}

Run for loop in parallel

19

#include <omp.h>
#include <stdio.h>

int main(int argc, char *argv[])

{

/* sequential code */

#pragma omp parallel

{
}

printf ("I am a parallel region.");

/* sequential code */

return 0;

Adaptation of Silberschatz, Galvin, Gagne slides for the textbook

~2Applied Operating Systems Concepts”

Threading Issues

® Semantics of fork() and exec() system calls

® Signal handling
= Synchronous and asynchronous

" Thread cancellation of target thread
= Asynchronous or deferred

" Thread-local storage

® Scheduler Activations

Adaptation of Silberschatz, Galvin, Gagne slides for the textbook

20 ~2Applied Operating Systems Concepts”

Semantics of fork() and exec()

" Does fork () duplicate only the calling thread or all threads?
= Some UNIXes have two versions of fork
= POSIX requires that only the thread which called
fork ()is duplicated

" exec () usually works as normal — replace the running
process including all threads

Adaptation of Silberschatz, Galvin, Gagne slides for the textbook

21 ~2Applied Operating Systems Concepts”

Signal Handling

® Signals are used in UNIX systems to notify a process that a
particular event has occurred.

® A signal handler is used to process signals
1. Signal is generated by particular event
2. Signal is delivered to a process
3. Signal is handled by one of two signal handlers:
a) default
b) user-defined

® Every signal has default handler that kernel runs when
handling signal

User-defined signal handler can override default
* For single-threaded, signal delivered to process

Adaptation of Silberschatz, Galvin, Gagne slides for the textbook

22 ~2Applied Operating Systems Concepts”

Signal Handling (Cont.)

Where should a signal be delivered for multi-threaded?
= Deliver the signal to the thread to which the signal applies
= Deliver the signal to every thread in the process
= Deliver the signal to certain threads in the process

= Assign a specific thread to receive all signals for the
process

Adaptation of Silberschatz, Galvin, Gagne slides for the textbook

23 ~2Applied Operating Systems Concepts”

Thread Cancellation

" Terminating a thread before it has finished
®" Thread to be canceled is target thread

" Two general approaches:

= Asynchronous cancellation terminates the target thread
immediately

= Deferred cancellation allows the target thread to periodically
check if it should be cancelled

" Pthread code to create and cancel a thread:

pthread.t tid;

/+ create the thread x/
pthread. create(&tid, 0, worker, NULL) ;

/+* cancel the thread x/
pthread.cancel (tid) ;

o4 Adaptation of Silberschatz, Galvin, Gagne slides for the textbook
~Applied Operating Systems Concepts”

Thread Cancellation (Cont.)

" Invoking thread cancellation requests cancellation, but actual cancellation
depends on thread state

Mode State Type
Off Disabled -
Deferred Enabled Deferred
Asynchronous Enabled Asynchronous

" |f thread has cancellation disabled, cancellation remains pending until
thread enables it

" Default type is deferred
= Cancellation only occurs when thread reaches cancellation point
- l.e. pthread_testcancel()
- then cleanup handler is invoked

Adaptation of Silberschatz, Galvin, Gagne slides for the textbook

25 ~2Applied Operating Systems Concepts”

Thread-Local Storage

" Thread-local storage (TLS) allows each thread to have its own
copy of data

® Useful when you do not have control over the thread creation
process (i.e., when using a thread pool)

B Different from local variables

= Local variables visible only during single function
invocation

= TLS visible across function invocations

" Similar to static data
= TLS is unique to each thread

Adaptation of Silberschatz, Galvin, Gagne slides for the textbook

26 ~2Applied Operating Systems Concepts”

Scheduler Activations

Both M:M and Two-level models require
communication to maintain the appropriate
number of kernel threads allocated to the
application

Typically use an intermediate data structure
between user and kernel threads — lightweight
process (LWP)

= Appears to be a virtual processor on which
process can schedule user thread to run

= Each LWP attached to kernel thread
= How many LWPs to create?
Scheduler activations provide upcalls - a

communication mechanism from the kernel to
the upcall handler in the thread library

This communication allows an application to
maintain the correct number of kernel threads

27

-

% +——ugar thread
’

LWP | =—— lightweight process

ey
[k |=——kemel thread
-,

Adaptation of Silberschatz, Galvin, Gagne slides for the textbook

~2Applied Operating Systems Concepts”

